1
|
Mehdipour A, Ebrahimi A, Shiri-Shahsavar MR, Soleimani-Rad J, Roshangar L, Samiei M, Ebrahimi-Kalan A. The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis. Rev Neurosci 2020; 30:857-868. [PMID: 31026226 DOI: 10.1515/revneuro-2018-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | | | - Jafar Soleimani-Rad
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Endodontics Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran,
| |
Collapse
|
2
|
Umbilical cord stem cells in the treatment of corneal disease. Surv Ophthalmol 2017; 62:803-815. [DOI: 10.1016/j.survophthal.2017.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
|
3
|
Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology 2015; 62:216-25. [PMID: 26045256 DOI: 10.1159/000381877] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption.
Collapse
Affiliation(s)
- Dominik Duscher
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif., USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Teng M, Huang Y, Zhang H. Application of stems cells in wound healing--an update. Wound Repair Regen 2014; 22:151-60. [PMID: 24635168 DOI: 10.1111/wrr.12152] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex but well-orchestrated tissue repair process composed of a series of molecular and cellular events conducted by various types of cells and extracellular matrix. Despite a variety of therapeutic strategies proposed to accelerate the healing of acute and/or chronic wounds over the past few decades, effective treatment of chronic nonhealing wounds still remains a challenge. Due to the recent advances in stem cell research, a dramatic enthusiasm has been drawn to the application of stem cells in regenerative medicine. Both embryonic and adult stem cells have prolonged self-renewal capacity and are able to differentiate into various tissue types. Nevertheless, use of embryonic stem cells is limited, owing to ethical concerns and legal restrictions. Adult stem cells, which could be isolated from bone marrow, umbilical cord blood, adipose tissue, skin and hair follicles,are being explored extensively to facilitate the healing of both acute and chronic wounds. The current article summarizes recent research on various types of stem cell-based strategies applied to improve wound healing. In addition, future directions of stem cell-based therapy in wound healing have also been discussed. Finally, despite its apparent advantages, limitations and challenges of stem cell therapy are discussed.
Collapse
Affiliation(s)
- Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
5
|
Hayward CJ, Fradette J, Morissette Martin P, Guignard R, Germain L, Auger FA. Using human umbilical cord cells for tissue engineering: a comparison with skin cells. Differentiation 2014; 87:172-81. [PMID: 24930038 DOI: 10.1016/j.diff.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/15/2014] [Indexed: 01/04/2023]
Abstract
The epithelial cells and Wharton׳s jelly cells (WJC) from the human umbilical cord have yet to be extensively studied in respect to their capacity to generate tissue-engineered substitutes for clinical applications. Our reconstruction strategy, based on the self-assembly approach of tissue engineering, allows the production of various types of living human tissues such as skin and cornea from a wide range of cell types originating from post-natal tissue sources. Here we placed epithelial cells and WJC from the umbilical cord in the context of a reconstructed skin substitute in combination with skin keratinocytes and fibroblasts. We compared the ability of the epithelial cells from both sources to generate a stratified, differentiated skin-like epithelium upon exposure to air when cultured on the two stromal cell types. Conversely, the ability of the WJC to behave as dermal fibroblasts, producing extracellular matrix and supporting the formation of a differentiated epithelium for both types of epithelial cells, was also investigated. Of the four types of constructs produced, the combination of WJC and keratinocytes was the most similar to skin engineered from dermal fibroblasts and keratinocytes. When cultured on dermal fibroblasts, the cord epithelial cells were able to differentiate in vitro into a stratified multilayered epithelium expressing molecules characteristic of keratinocyte differentiation after exposure to air, and maintaining the expression of keratins K18 and K19, typical of the umbilical cord epithelium. WJC were able to support the growth and differentiation of keratinocytes, especially at the early stages of air-liquid culture. In contrast, cord epithelial cells cultured on WJC did not form a differentiated epidermis when exposed to air. These results support the premise that the tissue from which cells originate can largely affect the properties and homoeostasis of reconstructed substitutes featuring both epithelial and stromal compartments.
Collapse
Affiliation(s)
- Cindy J Hayward
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Pascal Morissette Martin
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Rina Guignard
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada.
| | - Lucie Germain
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - François A Auger
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Aile-R, Hôpital de l'Enfant-Jésus, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC, Canada G1J 1Z4; Axe Médecine Régénératrice-Centre de recherche FRQS du CHU de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Yamada R, Kitajima K, Arai K, Igarashi M. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments. J Oral Pathol Med 2014; 43:637-45. [PMID: 24762372 DOI: 10.1111/jop.12183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. METHODS Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). RESULTS Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. CONCLUSION These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro.
Collapse
Affiliation(s)
- Rie Yamada
- Advanced Operative Dentistry and Endodontics, The Nippon Dental University, Graduate School of Life Dentistry at Niigata, Niigata City, Japan
| | | | | | | |
Collapse
|
7
|
Abstract
The ultimate goal of the treatment of cutaneous burns and wounds is to restore the damaged skin both structurally and functionally to its original state. Recent research advances have shown the great potential of stem cells in improving the rate and quality of wound healing and regenerating the skin and its appendages. Stem cell-based therapeutic strategies offer new prospects in the medical technology for burns and wounds care. This review seeks to give an updated overview of the applications of stem cell therapy in burns and wound management since our previous review of the “stem cell strategies in burns care”.
Collapse
Affiliation(s)
- Lin Huang
- Department of Surgery, Division of Plastic, Reconstructive and Aesthetic Surgery, The Chinese University of Hong Kong, Hong Kong
| | | |
Collapse
|
8
|
Hayward CJ, Fradette J, Galbraith T, Rémy M, Guignard R, Gauvin R, Germain L, Auger FA. Harvesting the potential of the human umbilical cord: isolation and characterisation of four cell types for tissue engineering applications. Cells Tissues Organs 2012; 197:37-54. [PMID: 22965075 DOI: 10.1159/000341254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
The human umbilical cord (UC) has attracted interest as a source of cells for many research applications. UC solid tissues contain four cell types: epithelial, stromal, smooth muscle and endothelial cells. We have developed a unique protocol for the sequential extraction of all four cell types from a single UC, allowing tissue reconstruction using multiple cell types from the same source. By combining perfusion, immersion and explant techniques, all four cell types have been successfully expanded in monolayer cultures. We have also characterised epithelial and Wharton's jelly cells (WJC) by immunolabelling of specific proteins. Epithelial cell yields averaged at 2.3 × 10(5) cells per centimetre UC, and the cells expressed an unusual combination of keratins typical of simple, mucous and stratified epithelia. Stromal cells in the Wharton's jelly expressed desmin, α-smooth muscle actin, elastin, keratins (K12, K16, K18 and K19), vimentin and collagens. Expression patterns in cultured cells resembled those found in situ except for basement membrane components and type III collagen. These stromal cells featured a sustained proliferation rate up to passage 12 after thawing. The mesenchymal stem cell (MSC) character of the WJC was confirmed by their expression of typical MSC surface markers and by adipogenic and osteogenic differentiation assays. To emphasise and demonstrate their potential for regenerative medicine, UC cell types were successfully used to produce human tissue-engineered constructs. Both bilayered stromal/epithelial and vascular substitutes were produced, establishing the versatility and importance of these cells for research and therapeutic applications.
Collapse
Affiliation(s)
- Cindy J Hayward
- Centre LOEX de l'Université Laval, Université Laval, Québec, Qué., Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration. Front Med 2012; 6:41-7. [DOI: 10.1007/s11684-012-0175-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/02/2011] [Indexed: 12/24/2022]
|
10
|
Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev Rep 2012; 7:935-47. [PMID: 21431286 DOI: 10.1007/s12015-011-9245-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stem cells involved in renewal of the corneal epithelium are located in the basal region of the limbus, a narrow transition zone surrounding the cornea. In many ocular surface disorders loss of these stem cells results in partial or complete vision loss. Conventional corneal transplant in these patients is associated with dismal results. Stem cell transplantation offers new hope to such patients. The umbilical cord is emerging as an important source of stem cells that may have potential clinical applications. There are advantages to the use of umbilical cord stem cells as these cells are less immunogenic, non-tumorigenic, highly proliferative and ethically acceptable. In this study, we have confirmed the expression of several putative limbal stem cell markers such as HES1, ABCG2, BMI1, CK15 as well as cell adhesion-associated molecules INTEGRIN-α6, -α9, -β1, COLLAGEN-IV and LAMININ in our recently characterized CLEC-muc population derived from human umbilical cord. Ex vivo expansion of these cells on a human amniotic membrane substrate formed a stratified cell sheet that similarly expresses some of these molecules as well as cornea-specific cytokeratins, CK3 and CK12. Transplantation of a bioengineered CLEC-muc sheet in limbal stem cell-deficient rabbit eyes resulted in regeneration of a smooth, clear corneal surface with phenotypic expression of the normal corneal-specific epithelial markers CK3, CK12 but not CK4 or CK1/10. Our results suggest that CLEC-muc is a novel stem cell that can be ex vivo expanded for corneal epithelial regeneration in the treatment of various eye diseases.
Collapse
|
11
|
Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:9. [PMID: 21241480 PMCID: PMC3033847 DOI: 10.1186/1756-9966-30-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/17/2011] [Indexed: 12/11/2022]
Abstract
Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy.
Collapse
Affiliation(s)
- Daniele Lodi
- Department of Nephrology, Dialysis and Transplantation, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | | | | |
Collapse
|
12
|
Reza HM, Ng BY, Phan TT, Tan DTH, Beuerman RW, Ang LPK. Characterization of a Novel Umbilical Cord Lining Cell with CD227 Positivity and Unique Pattern of P63 Expression and Function. Stem Cell Rev Rep 2010; 7:624-38. [DOI: 10.1007/s12015-010-9214-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
|
14
|
In vitro biocompatibility of chitosan porous skin regenerating templates (PSRTs) using primary human skin keratinocytes. Toxicol In Vitro 2010; 24:721-7. [PMID: 20079826 DOI: 10.1016/j.tiv.2010.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/10/2009] [Accepted: 01/12/2010] [Indexed: 11/20/2022]
Abstract
Biopolymer chitosan (beta-1,4-d-glucosamine) comprises the copolymer mixture of N-acetylglucosamine and glucosamine. The natural biocompatibility and biodegradability of chitosan have recently highlighted its potential use for applications in wound management. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability, but it is unknown as to what degree. Hence, the biocompatibility of the chitosan porous skin regenerating templates (PSRT 82, 87 and 108) was determined using an in vitro toxicology model at the cellular and molecular level on primary normal human epidermal keratinocytes (pNHEK). Cytocompatibility was accessed by using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT) assay from 24 to 72h. To assess the genotoxicity of the PSRTs, DNA damage to the pNHEK was evaluated by using the Comet assay following direct contact with the various PSRTs. Furthermore, the skin pro-inflammatory cytokines TNF-alpha and IL-8 were examined to evaluate the tendency of the PSRTs to provoke inflammatory responses. All PSRTs were found to be cytocompatible, but only PSRT 108 was capable of stimulating cell proliferation. While all of the PSRTs showed some DNA damage, PSRT 108 showed the least DNA damage followed by PSRT 87 and 82. PSRT 87 and 82 induced a higher secretion of TNF-alpha and IL-8 in the pNHEK cultures than did PSRT 108. Hence, based on our experiments, PSRT 108 is the most biocompatible wound dressing of the three tested.
Collapse
|
15
|
Common features of umbilical cord epithelial cells and epidermal keratinocytes. J Dermatol Sci 2008; 50:227-31. [DOI: 10.1016/j.jdermsci.2007.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/21/2007] [Accepted: 12/09/2007] [Indexed: 11/19/2022]
|
16
|
Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007; 25:2886-95. [PMID: 17690177 DOI: 10.1634/stemcells.2007-0417] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human umbilical cord (UC) has been a tissue of increasing interest in recent years. Many groups have shown the stem cell potency of stromal cells isolated from the human UC mesenchymal tissue, namely, Wharton's jelly. Since UC is a postnatal organ discarded after birth, the collection of cells does not require an invasive procedure with ethical concerns. Stromal cells, as the dominant cells of this fetus-derived tissue, possess multipotent properties between embryonic stem cells and adult stem cells. They bear a relatively higher proliferation rate and self-renewal capacity. Although they share common surface markers with bone marrow-derived MSCs, they also express certain embryonic stem cell markers, albeit in low levels. Without any spontaneous differentiation, they can be successfully differentiated into mature adipocytes, osteoblasts, chondrocytes, skeletal myocytes, cardiomyocytes, neurons, and endothelial cells. While causing no immunorejection reaction, they effectively function in vivo as dopaminergic neurons, myocytes, and endothelial cells. Given these characteristics, particularly the plasticity and developmental flexibility, UC stromal cells are now considered an alternative source of stem cells and deserve to be examined in long-term clinical trials. This review first aims to document the published findings so far regarding the nature of human UC stroma with special emphasis on the spatial distribution and functional structure of stromal cells and matrix, which serves as a niche for residing cells, and, secondly, to assess the in vitro and in vivo experiments in which differential stem cell potencies were evaluated.
Collapse
Affiliation(s)
- Alp Can
- Department of Histology and Embryology, Ankara University School of Medicine, Sihhiye, Ankara 06100, Turkey.
| | | |
Collapse
|
17
|
Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006; 24:2319-45. [PMID: 16794264 DOI: 10.1634/stemcells.2006-0066] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we report on recent advances on the functions of embryonic, fetal, and adult stem cell progenitors for tissue regeneration and cancer therapies. We describe new procedures for derivation and maturation of these stem cells into the tissue-specific cell progenitors. The localization of the adult stem cells and their niches, as well as their implication in the tissue repair after injuries and during cancer progression, are also described. The emphasis is on the interactions among certain developmental signaling factors, such as hormones, epidermal growth factor, hedgehog, Wnt/beta-catenin, and Notch. These factors and their pathways are involved in the stringent regulation of the self-renewal and/or differentiation of adult stem cells. Novel strategies for the treatment of both diverse degenerating disorders, by cell replacement, and some metastatic cancer types, by molecular targeting multiple tumorigenic signaling elements in cancer progenitor cells, are also illustrated.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute of Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA.
| | | |
Collapse
|