1
|
Pageau G, Levasseur M, Paniconi T, Jubinville E, Goulet-Beaulieu V, Boivin G, Jean J. The possibility of spreading herpes simplex virus type 1 via food handling and sharing. J Appl Microbiol 2023; 134:lxad224. [PMID: 37827542 DOI: 10.1093/jambio/lxad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
AIMS Herpes simplex virus type 1 (HSV-1) is an enveloped virus that causes recurrent and incurable diseases in 67% of the world population. Although it is not listed as a foodborne virus, some studies have shown that it can be recovered from surfaces as well as food. METHODS AND RESULTS We investigated its persistence at -20°C, 4°C, 20°C, or 37°C for up to 7 days on stainless steel, aluminum, glass, polypropylene, cheddar cheese, sliced almond, and apple skin and in cola soft drink, orange juice, coffee, and milk, as well as its transferability from stainless steel to dry or moistened nitrile or latex gloves over time at typical ambient temperatures. Based on the plaque assay on Vero cells, HSV-1 persisted at least 24 h on all surfaces and at least 1 h on food matrices but was inactivated quickly in cola soft drink. Temperature and pH affected HSV-1 infectivity. Transfer of HSV-1 at a contact pressure of 1 kg cm2-1 for 10 s occurred only on latex, especially moistened. CONCLUSIONS Our data on the persistence of HSV-1 on food-related surfaces suggest that some risk may be associated with sharing foods with infected carriers.
Collapse
Affiliation(s)
- Gabrielle Pageau
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Marianne Levasseur
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Teresa Paniconi
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Eric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Valérie Goulet-Beaulieu
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Quebec City, Quebec G1V 4G2, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec G1V 0A6, Canada
| |
Collapse
|
2
|
Malik S, Sah R, Ahsan O, Muhammad K, Waheed Y. Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus. Vaccines (Basel) 2023; 11:325. [PMID: 36851203 PMCID: PMC9959597 DOI: 10.3390/vaccines11020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) is a great concern of the global health community due to its linked infection of inconspicuous nature and resultant serious medical consequences. Seropositive patients may develop ocular disease or genital herpes as characteristic infectious outcomes. Moreover, the infectious nature of HSV is so complex that the available therapeutic options have been modified in certain ways to cure it. However, no permanent and highly effective cure has been discovered. This review generates insights into the available prophylactic and therapeutic interventions against HSV. A methodological research approach is used for study design and data complication. Only the latest data from publications are acquired to shed light on updated therapeutic approaches. These studies indicate that the current antiviral therapeutics can suppress the symptoms and control viral transmission up to a certain level, but cannot eradicate the natural HSV infection and latency outcomes. Most trials that have entered the clinical phase are made part of this review to understand what is new within the field. Some vaccination approaches are also discussed. Moreover, some novel therapeutic options that are currently in research annals are given due consideration for future development. The data can enable the scientific community to direct their efforts to fill the gaps that remain unfilled in terms of therapies for HSV. The need is to integrate scientific efforts to produce a proper cure against HSV to control the virus spread, resistance, and mutation in future disease management.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Omar Ahsan
- Department of Medicine, School of Health Sciences, Foundation University Islamabad, DHA Phase I, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
3
|
Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, Quan G, Wu C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 2021; 121:119-133. [PMID: 33285323 DOI: 10.1016/j.actbio.2020.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Transdermal drug delivery is an attractive route for dermatological disease therapy because it can directly target the lesion site on the skin, reduce adverse reactions associated with systemic administration, and improve patient compliance. However, the stratum corneum, as the main skin barrier, severely limits transdermal drug penetration, with compromised bioavailability. Microneedles (MNs), which are leveraged to markedly improve the penetration of therapeutic agents by piercing the stratum corneum and creating hundreds of reversible microchannels in a minimally invasive manner, have been envisioned as a milestone for effective transdermal drug delivery, especially for superficial disease therapy. Here, the emergence of versatile MNs for the transdermal delivery of various drugs is reviewed, particularly focusing on the application of MNs for the treatment of diverse skin diseases, including superficial tumors, scars, psoriasis, herpes, acne, and alopecia. Additionally, the promises and challenges of the widespread translation of MN-mediated transdermal drug delivery in the dermatology field are summarized.
Collapse
|
4
|
Fan J, Jiang H, Cheng L, Ma B, Liu R. Oncolytic herpes simplex virus and temozolomide synergistically inhibit breast cancer cell tumorigenesis in vitro and in vivo. Oncol Lett 2020; 21:99. [PMID: 33376532 PMCID: PMC7751368 DOI: 10.3892/ol.2020.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
The oncolytic herpes simplex virus (HSV) G47Δ can selectively eliminate glioblastoma cells via viral replication and temozolomide (TMZ) has been clinically used to treat glioblastoma. However, the combined effect of G47Δ and TMZ on cancer cells, particularly on breast cancer cells, remains largely unknown. The objective of the present study was to investigate the role and underlying mechanism of G47Δ and TMZ, in combination, in breast cancer cell tumorigenesis. The human breast cancer cell lines SK-BR-3 and MDA-MB-468 were treated with G47Δ and TMZ individually or in combination. Cell viability, flow cytometry, reverse transcription quantitative-PCR and western blotting were performed to investigate the synergy between G47Δ and TMZ in regulating breast cancer cell behavior in vitro. The role of G47Δ and TMZ in suppressing tumorigenesis in vivo was investigated in a xenograft mouse model. G47Δ and TMZ served a synergistic role resulting in decreased breast cancer cell viability, induction of cell cycle arrest, promotion of tumor cell apoptosis and enhancement of DNA damage response in vitro. The combined administration of G47Δ and TMZ also effectively suppressed breast cancer cell-derived tumor growth in vivo, compared with the administration of G47Δ or TMZ alone. Synergy between G47Δ and TMZ was at least partially mediated via TMZ-induced acceleration of G47Δ replication, and such a synergy in breast cancer cells in vitro and in vivo provides novel insight into the future development of a therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Jingjing Fan
- Department of Breast and Neck Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830011, P.R. China
| | - Hua Jiang
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Cheng
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Binlin Ma
- Department of Breast and Neck Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830011, P.R. China
| | - Renbin Liu
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
5
|
Lian X, Yang X, Shao J, Hou F, Yang S, Pan D, Zhang Z. Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Oncolytic activity of HF10 in head and neck squamous cell carcinomas. Cancer Gene Ther 2019; 27:585-598. [PMID: 31477804 DOI: 10.1038/s41417-019-0129-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
Recent developments in therapeutic strategies have improved the prognosis of head and neck squamous cell carcinoma (HNSCC). Nevertheless, 5-year survival rate remains only 40%, necessitating new therapeutic agents. Oncolytic virotherapy entails use of replication-competent viruses to selectively kill cancer cells. We aimed to explore the potential of HF10 as an oncolytic virus against human or mouse HNSCC cell lines, and primary-cultured HNSCC cells. HF10 replicated well in all the HNSCC cells, in which it induced cytopathic effects and cell killing. Next, we investigated the oncolytic effects of HF10 in ear tumor models with human or mouse tumor cells. We detected HF10-infected cells within the ear tumors based on their expression of green fluorescent protein. HF10 injection suppressed ear tumor growth and prolonged overall survival. In the syngeneic model, HF10 infection induced tumor necrosis with infiltration of CD8-positive cells. Moreover, the splenocytes of HF10-treated mice released antitumor cytokines, IL-2, IL-12, IFN-alpha, IFN-beta, IFN-gamma, and TNF-alpha, after stimulation with tumor cells in vitro. The HF10-treated mice that survived their original tumor burdens rejected tumor cells upon re-challenge. These results suggested that HF10 killed HNSCC cells and induced antitumoral immunity, thereby establishing it as a promising agent for the treatment of HNSCC patients.
Collapse
|
7
|
Wei D, Xu J, Liu XY, Chen ZN, Bian H. Fighting Cancer with Viruses: Oncolytic Virus Therapy in China. Hum Gene Ther 2019; 29:151-159. [PMID: 29284308 DOI: 10.1089/hum.2017.212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As part of oncolytic virotherapy to treat cancer, oncolytic viruses (OVs) can selectively infect tumor cells to promote oncolysis of cancer cells, local immunological reactions, and systemic antitumor immunity with minimal toxicity to normal tissues. The immunostimulatory properties of OVs provide enormous benefits for the treatment of cancer. A variety of OVs, including genetically engineered and natural viruses, have shown promise in preclinical models and clinical studies. In 2005, the China Food and Drug Administration approved its first OV drug, Oncorine (H101), for treatment of advanced head and neck cancer. To explore new treatment strategies, >200 recombinant or natural OVs are undergoing in-depth investigation in China, and >250 oncolytic virotherapy-related reports from the OV community in China have been published in the past 5 years. These studies investigated a variety of exogenous genes and combination therapeutic strategies to enhance the treatment effects of OVs. To date, five clinical trials covering four OV agents (Oncorine, OrienX010, KH901, and H103) are ongoing, and additional OV agents are awaiting approval for clinical trials in China. Overall, this research emphasizes that combination therapy, especially tumor immunotherapy coupled with effective system administration strategies, can promote the development of oncolytic virotherapies. This article focuses on studies that were carried out in China in order to give an overview of the past, present, and future of oncolytic virotherapy in China.
Collapse
Affiliation(s)
- Ding Wei
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Jing Xu
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Xin-Yuan Liu
- 2 State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Nan Chen
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Huijie Bian
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
8
|
Bailer SM, Funk C, Riedl A, Ruzsics Z. Herpesviral vectors and their application in oncolytic therapy, vaccination, and gene transfer. Virus Genes 2017. [PMID: 28634751 DOI: 10.1007/s11262-017-1482-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herpesviruses are enveloped DNA viruses that infect vertebrate cells. Their high potential cloning capacity and the lifelong persistence of their genomes in various host cells make them attractive platforms for vector-based therapy. In this review, we would like to highlight recent advances of three major areas of herpesvirus vector development and application: (i) oncolytic therapy, (ii) recombinant vaccines, and (iii) large capacity gene transfer vehicles.
Collapse
Affiliation(s)
- Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany. .,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany.,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - André Riedl
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany.,German Center for Infection Research - DZIF, Freiburg, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany. .,German Center for Infection Research - DZIF, Freiburg, Germany.
| |
Collapse
|
9
|
Presage of oncolytic virotherapy for oral cancer with herpes simplex virus. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:53-60. [PMID: 28479936 PMCID: PMC5405200 DOI: 10.1016/j.jdsr.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/30/2022] Open
Abstract
A virus is a pathogenic organism that causes a number of infectious diseases in humans. The oral cavity is the site at which viruses enter and are excreted from the human body. Herpes simplex virus type 1 (HSV-1) produces the primary infectious disease, gingivostomatitis, and recurrent disease, labial herpes. HSV-1 is one of the most extensively investigated viruses used for cancer therapy. In principle, HSV-1 infects epithelial cells and neuronal cells and exhibits cytotoxicity due to its cytopathic effects on these cells. If the replication of the virus occurs in tumor cells, but not normal cells, the virus may be used as an antitumor agent. Therefore, HSV-1 genes have been modified by genetic engineering, and in vitro and in vivo studies with the oncolytic virus have demonstrated its efficiency against head and neck cancer including oral cancer. The oncolytic abilities of other viruses such as adenovirus and reovirus have also been demonstrated. In clinical trials, HSV-1 is the top runner and is now available for the treatment of patients with advanced melanoma. Thus, melanoma in the oral cavity is the target of oncolytic HSV-1. Oncolytic virotherapy is a hopeful and realistic modality for the treatment of oral cancer.
Collapse
|
10
|
Kratholm SK, Iversen MB, Reinert L, Jensen SK, Hokland M, Andersen T, Rankin A, Young D, Frische S, Paludan SR, Holm CK. Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections. PLoS One 2013; 8:e81790. [PMID: 24358128 PMCID: PMC3864838 DOI: 10.1371/journal.pone.0081790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022] Open
Abstract
Interleukin (IL) -21 is produced by Natural Killer T (NKT) cells and CD4(+) T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK) cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R) and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT) and IL-21R knock out (KO) mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2) infection model to show that IL-21 - IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i) WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i.) and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21) had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.
Collapse
Affiliation(s)
| | | | - Line Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Simon K. Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Thomas Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Andrew Rankin
- Immunology and Autoimmunity, Pfizer Inc. Cambridge, Massachusetts, United States of America
| | - Deborah Young
- Immunology and Autoimmunity, Pfizer Inc. Cambridge, Massachusetts, United States of America
| | - Sebastian Frische
- The Water and Salt Research Centre, Institute of Anatomy, Aarhus University, Aarhus, Denmark
| | | | - Christian K. Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
11
|
Mishra D, Hubenak JR, Mathur AB. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J Biomed Mater Res A 2013; 101:3646-60. [PMID: 23878102 DOI: 10.1002/jbm.a.34642] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 02/03/2023]
Abstract
Nanoparticle-based drug delivery systems are appealing because, among other properties, they are easily manufactured and have the capacity to encapsulate a wide variety of drugs, many of which are not directly miscible with water. This review classifies nanoparticles into three broad categories based upon material composition: bio-inspired systems, synthetic systems, and inorganic systems. Each has distinct properties suitable for drug delivery applications, including their structure, composition, and pharmacokinetics (including clearance and uptake mechanisms), making each uniquely suitable for certain types of drugs. Furthermore, nanoparticles can be customized, making them ideal for a variety of applications. Advantages and disadvantages of the different systems are discussed. Strategies for improving nanoparticle efficacy include adding targeting agents on the nanoparticle surface, altering the degradation profile to control drug release, or PEGylating the surface to increase circulation times and reduce immediate clearance by the kidneys. The future of nanoparticle systems seems to be focused on further improving overall patient outcome by increasing delivery accuracy to the target area.
Collapse
Affiliation(s)
- Deepa Mishra
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 602, Houston, Texas, 77030
| | | | | |
Collapse
|
12
|
Xiang Z, He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics 2013; 14 Suppl 4:S2. [PMID: 23514126 PMCID: PMC3599071 DOI: 10.1186/1471-2105-14-s4-s2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets.
Collapse
Affiliation(s)
- Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
13
|
Sahin TT, Kasuya H, Nomura N, Shikano T, Yamamura K, Gewen T, Kanzaki A, Fujii T, Sugae T, Imai T, Nomoto S, Takeda S, Sugimoto H, Kikumori T, Kodera Y, Nishiyama Y, Nakao A. Impact of novel oncolytic virus HF10 on cellular components of the tumor microenviroment in patients with recurrent breast cancer. Cancer Gene Ther 2011; 19:229-37. [PMID: 22193629 DOI: 10.1038/cgt.2011.80] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oncolytic viruses are a promising method of cancer therapy, even for advanced malignancies. HF10, a spontaneously mutated herpes simplex type 1, is a potent oncolytic agent. The interaction of oncolytic herpes viruses with the tumor microenvironment has not been well characterized. We injected HF10 into tumors of patients with recurrent breast carcinoma, and sought to determine its effects on the tumor microenvironment. Six patients with recurrent breast cancer were recruited to the study. Tumors were divided into two groups: saline-injected (control) and HF10-injected (treatment). We investigated several parameters including neovascularization (CD31) and tumor lymphocyte infiltration (CD8, CD4), determined by immunohistochemistry, and apoptosis, determined by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Median apoptotic cell count was lower in the treatment group (P=0.016). Angiogenesis was significantly higher in treatment group (P=0.032). Count of CD8-positive lymphocytes infiltrating the tumors was higher in the treatment group (P=0.008). We were unable to determine CD4-positive lymphocyte infiltration. An effective oncolytic viral agent must replicate efficiently in tumor cells, leading to higher viral counts, in order to aid viral penetration. HF10 seems to meet this criterion; furthermore, it induces potent antitumor immunity. The increase in angiogenesis may be due to either viral replication or the inflammatory response.
Collapse
Affiliation(s)
- T T Sahin
- Department of Surgery II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Argnani R, Marconi P, Volpi I, Bolanos E, Carro E, Ried C, Santamaria E, Pourchet A, Epstein AL, Brocker T, Corrales FJ, Manservigi R, Goicoechea I, Foschini M, Hernandez-Alcoceba R. Characterization of herpes simplex virus 1 strains as platforms for the development of oncolytic viruses against liver cancer. Liver Int 2011; 31:1542-53. [PMID: 22093330 DOI: 10.1111/j.1478-3231.2011.02628.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Diverse oncolytic viruses (OV) are being designed for the treatment of cancer. The characteristics of the parental virus strains may influence the properties of these agents. AIMS To characterize two herpes simplex virus 1 strains (HSV-1 17syn(+) and HFEM) as platforms for virotherapy against liver cancer. METHODS The luciferase reporter gene was introduced in the intergenic region 20 locus of both HSV-1 strains, giving rise to the Cgal-Luc and H6-Luc viruses. Their properties were studied in hepatocellular carcinoma (HCC) cells in vitro. Biodistribution was monitored by bioluminescence imaging (BLI) in athymic mice and immune-competent Balb/c mice. Immunogenicity was studied by MHC-tetramer staining, in vivo killing assays and determination of specific antibody production. Intratumoural transgene expression and oncolytic effect were studied in HuH-7 xenografts. RESULTS The H6-Luc virus displayed a syncytial phenotype and showed higher cytolytic effect on some HCC cells. Upon intravenous or intrahepatic injection in mice, both viruses showed a transient transduction of the liver with rapid relocalization of bioluminescence in adrenal glands, spinal cord, uterus and ovaries. No significant differences were observed in the immunogenicity of these viruses. Local intratumoural administration caused progressive increase in transgene expression during the first 5 days and persisted for at least 2 weeks. H6-Luc achieved faster amplification of transgene expression and stronger inhibition of tumour growth than Cgal-Luc, although toxicity of these non-attenuated viruses should be reduced to obtain a therapeutic effect. CONCLUSIONS The syncytial H6-Luc virus has a strong oncolytic potential on human HCC xenografts and could be the basis for potent OV.
Collapse
Affiliation(s)
- Rafaela Argnani
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gaston DC, Whitley RJ, Parker JN. Engineered herpes simplex virus vectors for antitumor therapy and vaccine delivery. Future Virol 2011. [DOI: 10.2217/fvl.11.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically modified herpes simplex viruses (HSVs) have been exploited for both antitumor therapy and vaccine delivery. These mutant viruses retain their ability to replicate and lyse permissive cells, including many tumor types, and are referred to as oncolytic HSVs. In addition, deletion of nonessential genes permits the introduction of foreign genes to augment the antitumor effect by either immune stimulation, targeting for select tumors, or expression of tumor or vaccine antigens. This article reviews the development of oncolytic HSVs as an anticancer therapy, as well as the application of HSV-1 vectors for delivery of targeted antigens or as vaccine adjuvants. The impact of these novel vectors with respect to enhanced antitumor activity and development of antitumor vaccination strategies is discussed.
Collapse
Affiliation(s)
- David C Gaston
- Medical Scientist Training Program, Department of Cell Biology, CHB 130, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Richard J Whitley
- Departments of Pediatrics, Microbiology, Medicine & Neurosurgery, CHB 303, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jacqueline N Parker
- Departments of Pediatrics & Cell Biology, CHB 118B, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|