1
|
Iwabuchi T, Ogura K, Hagiwara K, Ueno S, Kitamura H, Yamanishi H, Tsunekawa Y, Kiso A. Ginsenosides in Panax ginseng Extract Promote Anagen Transition by Suppressing BMP4 Expression and Promote Human Hair Growth by Stimulating Follicle-Cell Proliferation. Biol Pharm Bull 2024; 47:240-244. [PMID: 38246611 DOI: 10.1248/bpb.b23-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.
Collapse
Affiliation(s)
- Tokuro Iwabuchi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Kazuki Ogura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Kenta Hagiwara
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Shogo Ueno
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Hiroaki Kitamura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Haruyo Yamanishi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yuki Tsunekawa
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Akinori Kiso
- Research Center, Maruzen Pharmaceuticals Co., Ltd
| |
Collapse
|
2
|
Cho JH, Song MC, Lee Y, Noh ST, Kim DO, Rha CS. Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
3
|
Zhou Y, Jia L, Zhou D, Chen G, Fu Q, Li N. Advances in microneedles research based on promoting hair regrowth. J Control Release 2023; 353:965-974. [PMID: 36549392 DOI: 10.1016/j.jconrel.2022.12.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Alopecia is the most common and difficult-to-treat hair disorder. It usually brings a significant psychological burden to the patients. With the growing popularity of alopecia, the study of alopecia has gained more attention. Currently, only minoxidil and finasteride have been approved by the FDA for the treatment of alopecia, but the efficacy has always been unsatisfactory. As a new form of transdermal drug delivery, microneedles have been widely used in the treatment of alopecia and have proven to be effective. Microneedles delivery can improve the efficiency of local drug delivery and patients' compliance, which can achieve better therapeutic effects on hair-related diseases. Therefore, microneedles have gained much attention in the field of alopecia and hair regrowth promotion in recent years. This review summarizes the last decade of research on the microneedles delivery design for the treatment of alopecia or promotion of hair regrowth and provides a comprehensive evaluation of this field.
Collapse
Affiliation(s)
- Yanjun Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Luan Jia
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Jeong G, Shin SH, Kim SN, Na Y, Park BC, Cho JH, Park WS, Kim HJ. Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells. J Ginseng Res 2022; 47:440-447. [DOI: 10.1016/j.jgr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
|
5
|
Kim MJ, Seong KY, Kim DS, Jeong JS, Kim SY, Lee S, Yang SY, An BS. Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater 2022; 143:189-202. [PMID: 35202857 DOI: 10.1016/j.actbio.2022.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Alopecia is defined as hair loss in a part of the head due to various causes, such as drugs, stress and autoimmune disorders. Various therapeutic agents have been suggested depending on the cause of the condition and patient sex, and age. Minoxidil (MXD) is commonly used topically to treat alopecia, but its low absorption rate limits widespread use. To overcome the low absorption, we suggest microneedles (MNs) as controlled drug delivery systems that release MXD. We used hyaluronic acid (HA) to construct MN, as it is biocompatible and safe. We examined the effect of HA on the hair dermal papilla (HDP) cells that control the development of hair follicles. HA enhanced proliferation, migration, and aggregation of HDP cell by increasing cell-cell adhesion and decreasing cell substratum. These effects were mediated by the cluster of differentiation (CD)-44 and phosphorylation of serine‑threonine kinase (Akt). In chemotherapy-induced alopecia mice, topical application of HA tended to decrease chemotherapy-induced hair loss. Although the amount of MXD administered by HA-MNs was 10% of topical treatment, the MXD-containing HA-MNs (MXD-HA-MNs) showed better effects on the growth of hair than topical application of MXD. In summary, our results demonstrated that HA reduces hair loss in alopecia mice, and that delivery of MXD and HA using MXD-HA-MNs maximizes therapeutic effects and minimize the side effects of MXD for the treatment of alopecia. STATEMENT OF SIGNIFICANCE: (1) Significance, This work reports a new approach for treatment of alopecia using a dissolving microneedle (MN) prepared with hyaluronic acid (HA). The HA provided a better environment for cellular functions in the hair dermal papilla cells. The HA-MNs containing minoxidil (MXD) exhibited a significant reduction of hair loss, although amount of MXD contained in them was only 10% of topically applied MXD., (2) Scientific impact, This is the first report demonstrating the direct anti-alopecia effects of HA administrated in a transdermal route and the feasibility of novel therapeutics using MXD-containing HA-MNs. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and alopecia.
Collapse
|
6
|
Wang J, Shen H, Chen T, Ma L. Hair growth-promoting effects of Camellia seed cake extract in human dermal papilla cells and C57BL/6 mice. J Cosmet Dermatol 2022; 21:5018-5025. [PMID: 35364626 DOI: 10.1111/jocd.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Camellia seed cake is a byproduct of Camellia oleifera Abel seed after oil extraction. Washing hair with Camellia seed cake extract is a traditional Chinese custom that has lasted for over one thousand years. However, the hair growth-promoting effects of Camellia seed cake extract were not investigated so far. This work examined the effects of de-saponinated Camellia seed cake extracts (DS-CSE) on hair growth, using in vitro and in vivo models. METHODS The studies on cell proliferation, cell cycle regulation and K+ channels activation effects of DS-CSE were performed on human dermal papilla cells (DPCs). Relative expression of insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and transforming growth factor-β (TGF-β1) in DPCs was determined by RT-PCR. Relative expression of ERK and AKT was determined by western blot analysis. Hair growth promoting effects was also measured in C57BL/6J mice model. RESULTS DS-CSE treatment significantly proliferated DPCs, relating to the increased proportion of DPCs in S and G2 /M phases, the activation of potassium channels as well as the promoted phosphorylation of ERK and AKT in DPCs. DS-CSE treatment also significantly upregulated the mRNA levels of HGF, VEGF and IGF-1, and downregulated the mRNA level of TGF-β1. Topical application of DS-CSE promoted hair growth on shaven back mice and also upregulated the expression of VEGF in mice. CONCLUSION Our results demonstrated that DS-CSE exerts a hair growth promoting effect in vitro and in vivo by proliferating DPCs through the ERK and AKT signaling pathways and regulating the expression of growth factors.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huchi Shen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Timson Chen
- Adolph Innovation Laboratory, Guangzhou Degu Personal Care Products Co., Ltd, Guangzhou, 510000, China
| | - Ling Ma
- Adolph Innovation Laboratory, Guangzhou Degu Personal Care Products Co., Ltd, Guangzhou, 510000, China
| |
Collapse
|
7
|
Lee YH, Choi HJ, Kim JY, Kim JE, Lee JH, Cho SH, Yun MY, An S, Song GY, Bae S. Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway. J Microbiol Biotechnol 2021; 31:933-941. [PMID: 34099599 PMCID: PMC9706015 DOI: 10.4014/jmb.2101.01032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 μg/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.
Collapse
Affiliation(s)
- Yun Hee Lee
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Ji Yea Kim
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Eun Kim
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Jee-Hyun Lee
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - So-Hyun Cho
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Mi-Young Yun
- Department of Beauty Science, Kwangju Women’s University, Gwangju 62396, Republic of Korea
| | - Sungkwan An
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea,
G.Y. Song Phone: +82-42-821-5926 Fax: +82-42-823-6566 E-mail:
| | - Seunghee Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors S. Bae Phone: +82-2-450-0463 E-mail:
| |
Collapse
|
8
|
Hair-Growth-Promoting Effects of Fermented Red Ginseng Marc and Traditional Polyherb Formula in C57BL/6 Mice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An abnormal hair-growth cycle induces hair loss, which affects psychological distress and impairs life quality. Red ginseng marc (RGM) is usually discarded as a byproduct after extracting red ginseng, but several studies have shown that the RGM still has bioactive components including ginsenosides. Therefore, the hair-growth effects of fermented RGM (fRGM) and traditional polyherb formula (PH) were examined in C57BL/6 mice. The dorsal hairs of mice were depilated, and they were topically treated with fRGM or PH at 400, 200 and 100 mg/kg or the combination of both middle doses (combi) once a day for two weeks. The hair-covering regions were significantly increased with higher doses of fRGM and PH and in combi groups, compared with the control treated with distilled water. Hair length, thickness and weight also increased in the treatment groups. In particular, the fRGM and PH increased the anagen-phased hair follicles, the follicular diameters and the dermal thickness. Immunostains for Ki-67 showed the anagen-phased cell division in the treatment groups. The beneficial effects were greater in the high doses of fRGM and PH and the combi groups. These suggest hair-growth-promoting effects of fRGM, PH and the combination by enhancing the hair-growth cycle.
Collapse
|
9
|
Cho EC, Kim K. A comprehensive review of biochemical factors in herbs and their constituent compounds in experimental studies on alopecia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112907. [PMID: 32360043 DOI: 10.1016/j.jep.2020.112907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alopecia is a chronic condition that may cause emotional and psychological distress to patients, which may significantly impact a patient's quality of life. As conventional treatments have only a transient therapeutic effect and result in unwanted side effects, many patients have attempted to find therapeutic herbs or compounds that function as safer and more potent treatments for alopecia. Many such herbs have been used in complementary and alternative medicine (CAM) for centuries; however, there is a lack of information on the therapeutic mechanisms of herbs used for the treatment of alopecia. AIM OF THE STUDY The aim of this review was to perform a critical assessment of the methods and results of experimental studies related to alopecia and to provide the potential mechanisms of action of herbs and their constituent compounds used in the identified studies, in particular, in relation to the stages of the cell cycle. We hope to better guide the clinical application and scientific research of herbs for the treatment of alopecia. MATERIALS AND METHODS We reviewed experimental studies to determine the methods used and the mechanism of action of the herbs and constituent compounds. Databases, including Medline (via PubMed), EMBASE, OASIS, and RISS, were searched for the following keywords: "medicinal plants," "alopecia," "alopecia areata," "androgenetic alopecia," "animal experiment," and "in vitro study." We also assessed the risks of bias, toxicity, and taxonomy to determine the quality of information. RESULTS C57BL/6 mice and human dermal papilla cells were the most commonly used models for in vivo and in vitro studies, respectively. Many herbs and their constituent compounds were used to treat alopecia by managing the hair cycle, keratinocyte proliferation, apoptosis, angiogenesis, hormones, and inflammation. These compounds prolong the anagen phase, shorten the transition from the telogen to phase anagen, and inhibit premature catagen phase. CONCLUSIONS This review has further elucidated the therapeutic mechanisms of herbs and their constituent compounds that are relevant to alopecia and discussed the effectiveness of using herbal treatments. There is a need to develop evidence regarding the quality control, taxonomy, and toxicology of these compounds. Such improvements will provide a better quality of evidence to ensure the efficacy and safety of herbs and compounds used for the treatment of alopecia.
Collapse
Affiliation(s)
- Eun Chai Cho
- College of Korean Medicine, Kyung Hee University, South Korea.
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, South Korea.
| |
Collapse
|
10
|
Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review. Int J Mol Sci 2020; 21:ijms21020523. [PMID: 31947635 PMCID: PMC7013965 DOI: 10.3390/ijms21020523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/26/2022] Open
Abstract
Hair loss is a disorder in which the hair falls out from skin areas such as the scalp and the body. Several studies suggest the use of herbal medicine to treat related disorders, including alopecia. Dermal microcirculation is essential for hair maintenance, and an insufficient blood supply can lead to hair follicles (HF) diseases. This work aims to provide an insight into the ethnohistorical records of some nutritional compounds containing flavonoids for their potential beneficial features in repairing or recovering from hair follicle disruption. We started from a query for “alopecia” OR “hair loss” AND “Panaxginseng C.A. Mey.“ (or other six botanicals) terms included in Pubmed and Web of Sciences articles. The activities of seven common botanicals introduced with diet (Panaxginseng C.A. Mey., Malus pumila Mill cultivar Annurca, Coffea arabica, Allium sativum L., Camellia sinensis (L.) Kuntze, Rosmarinum officinalis L., Capsicum annum L.) are discussed, which are believed to reduce the rate of hair loss or stimulate new hair growth. In this review, we pay our attention on the molecular mechanisms underlying the bioactivity of the aforementioned nutritional compounds in vivo, ex vivo and in vitro studies. There is a need for systematic evaluation of the most commonly used plants to confirm their anti-hair loss power, identify possible mechanisms of action, and recommend their best adoption.
Collapse
|
11
|
Bao L, Gong L, Guo M, Liu T, Shi A, Zong H, Xu X, Chen H, Gao X, Li Y. Randomized trial of electrodynamic microneedle combined with 5% minoxidil topical solution for the treatment of Chinese male Androgenetic alopecia. J COSMET LASER THER 2020; 22:1-7. [PMID: 29028377 DOI: 10.1080/14764172.2017.1376094] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: In treating androgenetic alopecia, 5% minoxidil is a commonly used topical drug. By using electrodynamic microneedle at the same time may increase absorption of minoxidil and further stimulate hair growth.Objective: A 24-week, randomized, evaluator blinded, comparative study was performed to evaluate the efficacy of treating Chinese male androgenetic alopecia using microneedle combined with 5% minoxidil topical solution. Methods: Randomized subjects received topical 5% minoxidil (group 1, n = 20), local electrodynamic microneedle treatments (group 2, n = 20), or local electrodynamic microneedle treatments plus topical 5% minoxidil (group 3, n = 20). A total of 12 microneedle treatments were performed every 2 weeks with 2ml 5% minoxidil delivery in group three during each microneedle treatment. Patient receiving topical 5% minoxidil applied 1 ml of the solution twice daily over the course of the study. A total of 60 Chinese male subjects with Norwood-Hamilton type III-VI androgenetic alopecia were treated.Results: The mean improvement in total hair density from baseline to 24 weeks was 18.8/cm2 in group 1, 23.4/cm2 in group 2, and 38.3/cm2 in group 3. The hair growth in the three groups was significantly different (P = 0.002), but there were no significant differences in toxicity found between the three groups.Conclusions: Treatment with microneedle plus topical 5% minoxidil was associated with the best hair growth.
Collapse
Affiliation(s)
- Linlin Bao
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Dermatology, Shenzhen People's Hospital, Shenzhen, China
| | - Lin Gong
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Menger Guo
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Taoming Liu
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Anyu Shi
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haifeng Zong
- Department of Neonatology, Shenzhen Maternity and Child Care Hospital, Shenzhen, China
| | - Xuegang Xu
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongduo Chen
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinghua Gao
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanhong Li
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Katzer T, Leite Junior A, Beck R, da Silva C. Physiopathology and current treatments of androgenetic alopecia: Going beyond androgens and anti-androgens. Dermatol Ther 2019; 32:e13059. [PMID: 31400254 DOI: 10.1111/dth.13059] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 01/29/2023]
Abstract
Androgenetic alopecia (AGA) is the most diagnosed hair loss dysfunction. Its physiopathology comprises a genetic predisposition affording an exacerbated response of the hair follicles cells to androgens aggravated by scalp inflammation and extrinsic factors. This paper presents a review of the mechanisms and extrinsic factors involved in the AGA physiopathology as well as its conventional and emerging treatments. The research focused on reports regarding AGA physiopathology and treatments published between January 2001 and July 2019 in medical and related journals. The most used medical treatments for AGA-minoxidil and finasteride-present non satisfactory results in some cases. Currently, the low-level laser therapy is recognized as a safe and effective treatment for AGA. Some minimally invasive techniques-mesotherapy, microneedling, carboxytherapy, and platelet-rich plasma-are also used to stimulate hair growth. Pharmaceutical substances with mechanisms differing from the anti-androgen activity are under current investigation and many of them have botanical origins; however, formulations with higher performance are required, and the hair follicles ability of being a drug and nanoparticle reservoir has been researched. The association of different strategies, that is, substances with synergic mechanisms and the use of advantageous technologies associated with lifestyle changes could improve the treatment outcomes.
Collapse
Affiliation(s)
- Tatiele Katzer
- Pharmaceutical Nanotechnology Post Graduate Program, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ademir Leite Junior
- Clinical Psychology Post Graduate Program, Pontifícia Universidade Católica, São Paulo, Brazil
| | - Ruy Beck
- Pharmaceutical Science Post Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane da Silva
- Pharmaceutical Nanotechnology Post Graduate Program, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
13
|
Lee NE, Park SD, Hwang H, Choi SH, Lee RM, Nam SM, Choi JH, Rhim H, Cho IH, Kim HC, Hwang SH, Nah SY. Effects of a gintonin-enriched fraction on hair growth: an in vitro and in vivo study. J Ginseng Res 2019; 44:168-177. [PMID: 32095099 PMCID: PMC7033365 DOI: 10.1016/j.jgr.2019.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/18/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background Ginseng has been widely used as a health-promoting tonic. Gintonin present in ginseng acts as a lysophosphatidic acid (LPA) receptor ligand that activates six LPA receptor subtypes. The LPA6 subtype plays a key role in normal hair growth, and mutations in the LPA6 receptor impair normal human hair growth. Currently, human hair loss and alopecia are concerning issues that affect peoples' social and day-to-day lives. Objective We investigated the in vitro and in vivo effects of a gintonin-enriched fraction (GEF) on mouse hair growth. Methods Human hair follicle dermal papilla cells (HFDPCs) and six-week-old male C57BL/6 mice were used. The mice were divided into the four groups: control, 1% minoxidil, 0.75% GEF, and 1.5% GEF. The dorsal hair was removed to synchronize the telogen phase. Each group was treated topically, once a day, for 15 days. We analyzed hair growth activity and histological changes. Results GEF induced transient [Ca2+]i, which stimulated HFDPC proliferation and caused 5-bromo-2'-deoxyuridine (BrdU) incorporation in a concentration-dependent manner. GEF-mediated HFDPC proliferation was blocked by the LPA receptor antagonist and Ca2+ chelator. HFDPC treatment with GEF stimulated vascular endothelial growth factor release. Topical application of GEF and minoxidil promoted hair growth in a dose-dependent manner. Histological analysis showed that GEF and minoxidil increased the number of hair follicles and hair weight. Conclusion Topical application of GEF promotes mouse hair growth through HFDPC proliferation. GEF could be one of the main components of ginseng that promote hair growth and could be used to treat human alopecia.
Collapse
Affiliation(s)
- Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sang-Deuk Park
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, Department of Science in Korean Medicine, and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine, and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Ginsenoside Rb1 promotes the growth of mink hair follicle via PI3K/AKT/GSK-3β signaling pathway. Life Sci 2019; 229:210-218. [PMID: 31102746 DOI: 10.1016/j.lfs.2019.05.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
AIMS Hair follicles play a critical role in the process of hair growth. The dermal papilla cells (DPCs) are an important component in the hair follicle regeneration and growth. This study investigated the effects of ginsenoside Rb1 on the growth of cultured mink hair follicles and DPCs. MAIN METHODS The mink hair follicles were treated with ginsenoside Rb1 for 9 days and their lengths were measured every three days. Real-time PCR was used to determine the mRNA expression of vascularization endothelial growth factor A (VEGF-A), VEGF receptor 2 (VEGF-R2) and TGF-β1. In addition, the levels of proteins were detected by western blot. Cell proliferation was determined by immunofluorescence staining of proliferation marker Ki-67 and cell cycle analysis was performed on flow cytometry. Moreover, cell migration was evaluated by wound healing assay. KEY FINDINGS Ginsenoside Rb1 promoted the growth of hair follicles, and proliferation and migration of DPCs. Ginsenoside Rb1 improved the expression levels of VEGFA and VEGF-R2, while attenuated the TGF-β1 expression both in hair follicles and DPCs. Furthermore, ginsenoside Rb1 facilitated the activation of PI3K/AKT/GSK-3β signaling pathway in hair follicles and DPCs. SIGNIFICANCE The results reveals a crucial role of PI3K/AKT/GSK-3β signaling pathway in ginsenoside Rb1-induced growth of hair follicles and DPCs.
Collapse
|
15
|
Truong VL, Bak MJ, Lee C, Jun M, Jeong WS. Hair Regenerative Mechanisms of Red Ginseng Oil and Its Major Components in the Testosterone-Induced Delay of Anagen Entry in C57BL/6 Mice. Molecules 2017; 22:molecules22091505. [PMID: 28885585 PMCID: PMC6151708 DOI: 10.3390/molecules22091505] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022] Open
Abstract
Hair loss (alopecia) is a universal problem for numerous people in the world. The present study was conducted to investigate the effects of red ginseng oil (RGO) and its major components on hair re-growth using testosterone (TES)-induced delay of anagen entry in C57BL/6 mice and their mechanisms of action. Seven-week-old C57BL/6 mice were daily treated with TES for 1 h prior to topical application of 10% RGO, 1% linoleic acid (LA), 1% β-sitosterol (SITOS), or 1% bicyclo(10.1.0)tridec-1-ene (BICYCLO) once a day for 28 days. Hair regenerative capacity was significantly restored by treatment of RGO and its major compounds in the TES-treated mice. Histological analysis showed that RGO along with LA and SITOS but not BICYCLO promoted hair growth through early inducing anagen phase that was delayed by TES in mice. Treatment of mice with RGO, LA, or SITOS up-regulated Wnt/β-catenin and Shh/Gli pathways-mediated expression of genes such as β-catenin, Lef-1, Sonic hedgehog, Smoothened, Gli-1, Cyclin D1, and Cyclin E in the TES-treated mice. In addition, RGO and its major components reduced the protein level of TGF-β but enhanced the expression of anti-apoptotic protein Bcl-2. These results suggest that RGO is a potent novel therapeutic natural product for treatment of androgenic alopecia possibly through hair re-growth activity of its major components such as LA and SITOS.
Collapse
Affiliation(s)
- Van-Long Truong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea.
| | - Min Ji Bak
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea.
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Changook Lee
- Department of Pharmaceutics, College of Pharmacy, Inje University, Gimhae 50834, Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea.
| | - Woo-Sik Jeong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
16
|
Lee Y, Kim SN, Hong YD, Park BC, Na Y. Panax ginseng extract antagonizes the effect of DKK‑1-induced catagen-like changes of hair follicles. Int J Mol Med 2017; 40:1194-1200. [PMID: 28849028 PMCID: PMC5593495 DOI: 10.3892/ijmm.2017.3107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
It is well known that Panax ginseng (PG) has various pharmacological effects such as anti-aging and anti-inflammation. In a previous study, the authors identified that PG extract induced hair growth by means of a mechanism similar to that of minoxidil. In the present study, the inhibitory effect of PG extract on Dickkopf-1 (DKK-1)-induced catagen-like changes in hair follicles (HFs) was investigated in addition to the underlying mechanism of action. The effects of PG extract on cell proliferation, anti-apoptotic effect, and hair growth were observed using cultured outer root sheath (ORS) keratinocytes and human HFs with or without DKK-1 treatment. The PG extract significantly stimulated proliferation and inhibited apoptosis, respectively, in ORS keratinocytes. PG extract treatment affected the expression of apoptosis-related genes Bcl-2 and Bax. DKK-1 inhibited hair growth, and PG extract dramatically reversed the effect of DKK-1 on ex vivo human hair organ culture. PG extract antagonizes DKK-1-induced catagen-like changes, in part, through the regulation of apoptosis-related gene expression in HFs. These findings suggested that PG extract may reduce hair loss despite the presence of DKK-1, a strong catagen inducer via apoptosis.
Collapse
Affiliation(s)
- Yonghee Lee
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Su Na Kim
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Yong Deog Hong
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Byung Cheol Park
- Department of Dermatology, Dankook Medical College, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Yongjoo Na
- Amorepacific R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| |
Collapse
|
17
|
Tan JJY, Pan J, Sun L, Zhang J, Wu C, Kang L. Bioactives in Chinese Proprietary Medicine Modulates 5α-Reductase Activity and Gene Expression Associated with Androgenetic Alopecia. Front Pharmacol 2017; 8:194. [PMID: 28450835 PMCID: PMC5390023 DOI: 10.3389/fphar.2017.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Androgenetic alopecia (AGA) is characterized by a progressive and patterned transformation of thick, pigmented terminal scalp hairs into short, hypo-pigmented vellus-like hairs. The use of Minoxidil and Finasteride to treat AGA are often associated with complications in safety and efficacy. However, herbal remedies are deemed to have lesser side effects in many societies. This study aims to identify potential hair growth properties of individual compounds from a Chinese proprietary medicine known as Yangxue Shengfa capsule (YSC), used in China for many years for improving AGA. Six marker compounds, including 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), Chlorogenic acid, Emodin, Ferulic acid, Isoimperatorin, and Paeoniflorin were used for simultaneous HPLC quantification and anti-AGA in-vitro screening. Simultaneous quantification of these components was performed on 75% (v/v) methanol extracts of YSC, using a Welch Ultimate XB-C18 column and gradient elution. Five compounds significantly promoted cell proliferation in cultured immortalized human Dermal Papilla Cells (DPC). Multiple genes associated with the progression of AGA, including IGF-1, DKK-1, and TGF-β1, were found to be regulated by some of these compounds. Interestingly, Ferulic acid and Emodin demonstrated good pharmacological properties against AGA, thereby concluding the potential of these bioactives to be used in the treatment against AGA.
Collapse
Affiliation(s)
- Justin J Y Tan
- Department of Pharmacy, National University of SingaporeSingapore, Singapore
| | - Jing Pan
- Department of Pharmacy, National University of SingaporeSingapore, Singapore
| | - Lihan Sun
- Department of Pharmaceutical Analysis, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China
| | - Junying Zhang
- Department of Pharmaceutics of Traditional Chinese Medicine, China Pharmaceutical UniversityNanjing, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China
| | - Lifeng Kang
- Department of Pharmacy, National University of SingaporeSingapore, Singapore
| |
Collapse
|
18
|
Suzuki A, Matsuura D, Kanatani H, Yano S, Tsunakawa M, Matsuyama S, Shigemori H. Inhibitory Effects of Polyacetylene Compounds from Panax ginseng on Neurotrophin Receptor-Mediated Hair Growth. Biol Pharm Bull 2017; 40:1784-1788. [DOI: 10.1248/bpb.b17-00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Aoi Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | | | | | - Shingo Yano
- Products Development Department, BATHCLIN CORPORATION
| | | | | | | |
Collapse
|
19
|
Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson's disease models. Int J Nanomedicine 2015; 10:6757-72. [PMID: 26604750 PMCID: PMC4631432 DOI: 10.2147/ijn.s93918] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress plays a very critical role in neurodegenerative diseases, such as Parkinson's disease (PD), which is the second most common neurodegenerative disease among elderly people worldwide. Increasing evidence has suggested that phytobioactive compounds show enhanced benefits in cell and animal models of PD. Curcumin, resveratrol, ginsenosides, quercetin, and catechin are phyto-derived bioactive compounds with important roles in the prevention and treatment of PD. However, in vivo studies suggest that their concentrations are very low to cross blood-brain barrier thereby it limits bioavailability, stability, and dissolution at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled size of 1-100 nm is used to maximize efficiency in the treatment of PD. Nanosizing of phytobioactive compounds enhances the permeability into the brain with maximized efficiency and stability. Several nanodelivery techniques, including solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nanobioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm) synthesized using a nanoemulsion technique, showed enhanced bioavailability in the rat brain. Here, we discuss the most recent trends and applications in PD, including 1) the role of phytobioactive compounds in reducing oxidative stress and their bioavailability; 2) the role of nanotechnology in reducing oxidative stress during PD; 3) nanodelivery systems; and 4) various nanophytobioactive compounds and their role in PD.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Nanotechnology Research Center, Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Hyun-Myung Ko
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Nanotechnology Research Center, Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|