1
|
Chen M, Yang L, Zhou P, Jin S, Wu Z, Tan Z, Xiao W, Xu S, Zhu Y, Wang M, Jian D, Liu F, Tang Y, Zhao Z, Huang Y, Shi W, Xie H, Nie Q, Wang B, Deng Z, Li J. Single-cell transcriptomics reveals aberrant skin-resident cell populations and identifies fibroblasts as a determinant in rosacea. Nat Commun 2024; 15:8737. [PMID: 39384741 PMCID: PMC11464544 DOI: 10.1038/s41467-024-52946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
Rosacea is a chronic inflammatory skin disorder, whose underlying cellular and molecular mechanisms remain obscure. Here, we generate a single-cell atlas of facial skin from female rosacea patients and healthy individuals. Among keratinocytes, a subpopulation characterized by IFNγ-mediated barrier function damage is found to be unique to rosacea lesions. Blocking IFNγ signaling alleviates rosacea-like phenotypes and skin barrier damage in mice. The papulopustular rosacea is featured by expansion of pro-inflammatory fibroblasts, Schwann, endothelial and macrophage/dendritic cells. The frequencies of type 1/17 and skin-resident memory T cells are increased, and vascular mural cells are characterized by activation of inflammatory pathways and impaired muscle contraction function in rosacea. Most importantly, fibroblasts are identified as the leading cell type producing pro-inflammatory and vasodilative signals in rosacea. Depletion of fibroblasts or knockdown of PTGDS, a gene specifically upregulated in fibroblasts, blocks rosacea development in mice. Our study provides a comprehensive understanding of the aberrant alterations of skin-resident cell populations and identifies fibroblasts as a key determinant in rosacea development.
Collapse
Grants
- the National Natural Science Funds for Distinguished Young Scholars (No. 82225039), the National Key Research and Development Program of China (No. 2023YFC2509003), the National Natural Science Foundation of China (No. 82373508, No. 82303992, No. 82203958, No. 82073457, No.82203945, No. 82173448, No. 81874251), the Natural Science Funds of Hunan province for excellent Young Scholars (No. 2023JJ20094), the Natural Science Foundation of Hunan Province, China (No. 2021JJ31079).
Collapse
Affiliation(s)
- Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Peijie Zhou
- Center for Machine Learning Research, Peking University, Beijing, China
- AI for Science Institute, Beijing, China
| | - Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Zheng Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| |
Collapse
|
2
|
Nakamura M, Matsumoto M, Ito T, Hidaka I, Tatsuta H, Katsumoto Y. Microfluidic device for the high-throughput and selective encapsulation of single target cells. LAB ON A CHIP 2024; 24:2958-2967. [PMID: 38722067 DOI: 10.1039/d4lc00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Droplet-based microfluidic technologies for encapsulating single cells have rapidly evolved into powerful tools for single-cell analysis. In conventional passive single-cell encapsulation techniques, because cells arrive randomly at the droplet generation section, to encapsulate only a single cell with high precision, the average number of cells per droplet has to be decreased by reducing the average frequency at which cells arrive relative to the droplet generation rate. Therefore, the encapsulation efficiency for a given droplet generation rate is very low. Additionally, cell sorting operations are required prior to the encapsulation of target cells for specific cell type analysis. To address these challenges, we developed a cell encapsulation technology with a cell sorting function using a microfluidic chip. The microfluidic chip is equipped with an optical detection section to detect the optical information of cells and a sorting section to encapsulate cells into droplets by controlling a piezo element, enabling active encapsulation of only the single target cells. For a particle population including both targeted and non-targeted particles arriving at an average frequency of up to 6000 particles per s, with an average number of particles per droplet of 0.45, our device maintained a high purity above 97.9% for the single-target-particle droplets and achieved an outstanding throughput, encapsulating up to 2900 single target particles per s. The proposed encapsulation technology surpasses the encapsulation efficiency of conventional techniques, provides high efficiency and flexibility for single-cell research, and shows excellent potential for various applications in single-cell analysis.
Collapse
Affiliation(s)
- Masahiko Nakamura
- Life Science Technology Research & Development Dept., Application Technology Research & Development Div., Technology Development Laboratories, Sony Corporation, Tokyo, Japan.
| | - Masahiro Matsumoto
- Life Science Technology Research & Development Dept., Application Technology Research & Development Div., Technology Development Laboratories, Sony Corporation, Tokyo, Japan.
| | - Tatsumi Ito
- Life Science Technology Research & Development Dept., Application Technology Research & Development Div., Technology Development Laboratories, Sony Corporation, Tokyo, Japan.
| | - Isao Hidaka
- Life Science Technology Research & Development Dept., Application Technology Research & Development Div., Technology Development Laboratories, Sony Corporation, Tokyo, Japan.
| | - Hirokazu Tatsuta
- Life Science Technology Research & Development Dept., Application Technology Research & Development Div., Technology Development Laboratories, Sony Corporation, Tokyo, Japan.
| | - Yoichi Katsumoto
- Life Science Technology Research & Development Dept., Application Technology Research & Development Div., Technology Development Laboratories, Sony Corporation, Tokyo, Japan.
| |
Collapse
|
3
|
Clister T, Fey RM, Garrison ZR, Valenzuela CD, Bar A, Leitenberger JJ, Kulkarni RP. Optimization of Tissue Digestion Methods for Characterization of Photoaged Skin by Single Cell RNA Sequencing Reveals Preferential Enrichment of T Cell Subsets. Cells 2024; 13:266. [PMID: 38334658 PMCID: PMC10854603 DOI: 10.3390/cells13030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024] Open
Abstract
Healthy human skin tissue is often used as a control for comparison to diseased skin in patients with skin pathologies, including skin cancers or other inflammatory conditions such as atopic dermatitis or psoriasis. Although non-affected skin from these patients is a more appropriate choice for comparison, there is a paucity of studies examining such tissue. This lack is exacerbated by the difficulty of processing skin tissue for experimental analysis. In addition, choosing a processing protocol for skin tissue which preserves cell viability and identity while sufficiently dissociating cells for single-cell analysis is not a trivial task. Here, we compare three digestion methods for human skin tissue, evaluating the cell yield and viability for each protocol. We find that the use of a sequential dissociation method with multiple enzymatic digestion steps produces the highest cell viability. Using single-cell sequencing, we show this method results in a relative increase in the proportion of non-antigen-presenting mast cells and CD8 T cells as well as a relative decrease in the proportion of antigen-presenting mast cells and KYNU+ CD4 T cells. Overall, our findings support the use of this sequential digestion method on freshly processed human skin samples for optimal cell yield and viability.
Collapse
Affiliation(s)
- Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (T.C.); (R.M.F.); (Z.R.G.); (A.B.); (J.J.L.)
| | - Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (T.C.); (R.M.F.); (Z.R.G.); (A.B.); (J.J.L.)
| | - Zachary R. Garrison
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (T.C.); (R.M.F.); (Z.R.G.); (A.B.); (J.J.L.)
| | | | - Anna Bar
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (T.C.); (R.M.F.); (Z.R.G.); (A.B.); (J.J.L.)
| | - Justin J. Leitenberger
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (T.C.); (R.M.F.); (Z.R.G.); (A.B.); (J.J.L.)
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (T.C.); (R.M.F.); (Z.R.G.); (A.B.); (J.J.L.)
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
4
|
Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, Ferreira T, Bharadwaj HR, Shet V, Kundu M, Yee ALW, Abdul-Rahman T, Atallah O. The molecular landscape of neurological disorders: insights from single-cell RNA sequencing in neurology and neurosurgery. Eur J Med Res 2023; 28:529. [PMID: 37974227 PMCID: PMC10652629 DOI: 10.1186/s40001-023-01504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
Collapse
Affiliation(s)
- Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | | | - Shankaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | | - Toufik Abdul-Rahman
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
5
|
Mou CY, Zhang L, Zhao H, Huang ZP, Duan YL, Zhao ZM, Ke HY, Du J, Li Q, Zhou J. Single-nuclei RNA-seq reveals skin cell responses to Aeromonas hydrophila infection in Chinese longsnout catfish Leiocassis longirostris. Front Immunol 2023; 14:1271466. [PMID: 37908355 PMCID: PMC10613986 DOI: 10.3389/fimmu.2023.1271466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
As the primary natural barrier that protects against adverse environmental conditions, the skin plays a crucial role in the innate immune response of fish, particularly in relation to bacterial infections. However, due to the diverse functionality and intricate anatomical and cellular composition of the skin, deciphering the immune response of the host is a challenging task. In this study, single nuclei RNA-sequencing (snRNA-seq) was performed on skin biopsies obtained from Chinese longsnout catfish (Leiocassis longirostris), comparing Aeromonas hydrophila-infected subjects to healthy control subjects. A total of 19,581 single nuclei cells were sequenced using 10x Genomics (10,400 in the control group and 9,181 in the treated group). Based on expressed unique transcriptional profiles, 33 cell clusters were identified and classified into 12 cell types including keratinocyte (KC), fibroblast (FB), endothelial cells (EC), secretory cells (SC), immune cells, smooth muscle cells (SMC), and other cells such as pericyte (PC), brush cell (BC), red blood cell (RBC), neuroendocrine cell (NDC), neuron cells (NC), and melanocyte (MC). Among these, three clusters of KCs, namely, KC1, KC2, and KC5 exhibited significant expansion after A. hydrophila infection. Analysis of pathway enrichment revealed that KC1 was primarily involved in environmental signal transduction, KC2 was primarily involved in endocrine function, and KC5 was primarily involved in metabolism. Finally, our findings suggest that neutrophils may play a crucial role in combating A. hydrophila infections. In summary, this study not only provides the first detailed comprehensive map of all cell types present in the skin of teleost fish but also sheds light on the immune response mechanism of the skin following A. hydrophila infection in Chinese longsnout catfish.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Wang L, Wang B, Kou E, Du L, Zhu Y. New insight into the role of fibroblasts in the epithelial immune microenvironment in the single-cell era. Front Immunol 2023; 14:1259515. [PMID: 37809065 PMCID: PMC10556469 DOI: 10.3389/fimmu.2023.1259515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The skin is exposed to environmental challenges and contains heterogeneous cell populations such as epithelial cells, stromal cells, and skin-resident immune cells. As the most abundant type of stromal cells, fibroblasts have been historically considered silent observers in the immune responses of the cutaneous epithelial immune microenvironment (EIME), with little research conducted on their heterogeneity and immune-related functions. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have overcome the limitations of bulk RNA sequencing and help recognize the functional and spatial heterogeneity of fibroblasts, as well as their crosstalk with other types of cells in the cutaneous EIME. Recently, emerging single-cell sequencing data have demonstrated that fibroblasts notably participate in the immune responses of the EIME and impact the initiation and progression of inflammatory skin diseases. Here, we summarize the latest advances in the role of fibroblasts in the cutaneous EIME of inflammatory skin diseases and discuss the distinct functions and molecular mechanisms of activated fibroblasts in fibrotic skin diseases and non-fibrotic inflammatory skin diseases. This review help unveil the multiple roles of fibroblasts in the cutaneous EIME and offer new promising therapeutic strategies for the management of inflammatory skin diseases by targeting fibroblasts or the fibroblast-centered EIME.
Collapse
Affiliation(s)
| | | | | | - Lin Du
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Tan F, Xuan Y, Long L, Yu Y, Zhang C, Liang P, Wang Y, Chen M, Wen J, Chen G. Single-cell analysis of human prepuce reveals dynamic changes in gene regulation and cellular communications. BMC Genomics 2023; 24:514. [PMID: 37658288 PMCID: PMC10474653 DOI: 10.1186/s12864-023-09615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The cellular and molecular dynamics of human prepuce are crucial for understanding its biological and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dissected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells. RESULTS We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among different individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly dynamic between the prepuce cells of children and adults. Our cell-cell communication network analysis among different cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific (e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular communications could be closely associated with prepuce development in children and prepuce maintenance in adults. CONCLUSIONS Collectively, we systematically analyzed the cellular variations and molecular changes of the human prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light on the underlying molecular mechanisms of prepuce development and maintenance.
Collapse
Affiliation(s)
- Fei Tan
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Lan Long
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, 518172, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhua Zhang
- Department of Dermatology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Yaoqun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Meiyu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Geng Chen
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Center for Bioinformatics and Computational Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Mortlock RD, Ma EC, Cohen JM, Damsky W. Assessment of Treatment-Relevant Immune Biomarkers in Psoriasis and Atopic Dermatitis: Toward Personalized Medicine in Dermatology. J Invest Dermatol 2023; 143:1412-1422. [PMID: 37341663 PMCID: PMC10830170 DOI: 10.1016/j.jid.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/22/2023]
Abstract
Immunologically targeted therapies have revolutionized the treatment of inflammatory dermatoses, including atopic dermatitis and psoriasis. Although immunologic biomarkers hold great promise for personalized classification of skin disease and tailored therapy selection, there are no approved or widely used approaches for this in dermatology. This review summarizes the translational immunologic approaches to measuring treatment-relevant biomarkers in inflammatory skin conditions. Tape strip profiling, microneedle-based biomarker patches, molecular profiling from epidermal curettage, RNA in situ hybridization tissue staining, and single-cell RNA sequencing have been described. We discuss the advantages and limitations of each and open questions for the future of personalized medicine in inflammatory skin disease.
Collapse
Affiliation(s)
- Ryland D Mortlock
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Medical Scientist Training Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emilie C Ma
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Jeffrey M Cohen
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Kim SH, Oh J, Roh WS, Park J, Chung KB, Lee GH, Lee YS, Kim JH, Lee HK, Lee H, Park CO, Kim DY, Lee MG, Kim TG. Pellino-1 promotes intrinsic activation of skin-resident IL-17A-producing T cells in psoriasis. J Allergy Clin Immunol 2023; 151:1317-1328. [PMID: 36646143 DOI: 10.1016/j.jaci.2022.12.823] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Psoriasis is a chronically relapsing inflammatory skin disease primarily perpetuated by skin-resident IL-17-producing T (T17) cells. Pellino-1 (Peli1) belongs to a member of E3 ubiquitin ligase mediating immune receptor signaling cascades, including nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. OBJECTIVE We explored the potential role of Peli1 in psoriatic inflammation in the context of skin-resident T17 cells. METHODS We performed single-cell RNA sequencing of relapsing and resolved psoriatic lesions with analysis for validation data set of psoriasis. Mice with systemic and conditional depletion of Peli1 were generated to evaluate the role of Peli1 in imiquimod-induced psoriasiform dermatitis. Pharmacologic inhibition of Peli1 in human CD4+ T cells and ex vivo human skin cultures was also examined to evaluate its potential therapeutic implications. RESULTS Single-cell RNA sequencing analysis revealed distinct T-cell subsets in relapsing psoriasis exhibiting highly enriched gene signatures for (1) tissue-resident T cells, (2) T17 cells, and (3) NF-κB signaling pathway including PELI1. Peli1-deficient mice were profoundly protected from psoriasiform dermatitis, with reduced IL-17A production and NF-κB activation in γδ T17 cells. Mice with conditional depletion of Peli1 treated with FTY720 revealed that Peli1 was intrinsically required for the skin-resident T17 cell immune responses. Notably, pharmacologic inhibition of Peli1 significantly ameliorated murine psoriasiform dermatitis and IL-17A production from the stimulated human CD4+ T cells and ex vivo skin explants modeling psoriasis. CONCLUSION Targeting Peli1 would be a promising therapeutic strategy for psoriasis by limiting skin-resident T17 cell immune responses.
Collapse
Affiliation(s)
- Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jongwook Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Roh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Bae Chung
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | - Jong Hoon Kim
- Deparment of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Korea
| | - Chang-Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Xia D, Wang Y, Xiao Y, Li W. Applications of single-cell RNA sequencing in atopic dermatitis and psoriasis. Front Immunol 2022; 13:1038744. [PMID: 36505405 PMCID: PMC9732227 DOI: 10.3389/fimmu.2022.1038744] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a novel technology that characterizes molecular heterogeneity at the single-cell level. With the development of more automated, sensitive, and cost-effective single-cell isolation methods, the sensitivity and efficiency of scRNA-seq have improved. Technological advances in single-cell analysis provide a deeper understanding of the biological diversity of cells present in tissues, including inflamed skin. New subsets of cells have been discovered among common inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis. ScRNA-seq technology has also been used to analyze immune cell distribution and cell-cell communication, shedding new light on the complex interplay of components involved in disease responses. Moreover, scRNA-seq may be a promising tool in precision medicine because of its ability to define cell subsets with potential treatment targets and to characterize cell-specific responses to drugs or other stimuli. In this review, we briefly summarize the progress in the development of scRNA-seq technologies and discuss the latest scRNA-seq-related findings and future trends in AD and psoriasis. We also discuss the limitations and technical problems associated with current scRNA-seq technology.
Collapse
Affiliation(s)
- Dengmei Xia
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyi Wang
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Xiao
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Wei Li,
| |
Collapse
|
11
|
Cohen E, Johnson C, Redmond CJ, Nair RR, Coulombe PA. Revisiting the significance of keratin expression in complex epithelia. J Cell Sci 2022; 135:jcs260594. [PMID: 36285538 PMCID: PMC10658788 DOI: 10.1242/jcs.260594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 03/17/2023] Open
Abstract
A large group of keratin genes (n=54 in the human genome) code for intermediate filament (IF)-forming proteins and show differential regulation in epithelial cells and tissues. Keratin expression can be highly informative about the type of epithelial tissue, differentiation status of constituent cells and biological context (e.g. normal versus diseased settings). The foundational principles underlying the use of keratin expression to gain insight about epithelial cells and tissues primarily originated in pioneering studies conducted in the 1980s. The recent emergence of single cell transcriptomics provides an opportunity to revisit these principles and gain new insight into epithelial biology. Re-analysis of single-cell RNAseq data collected from human and mouse skin has confirmed long-held views regarding the quantitative importance and pairwise regulation of specific keratin genes in keratinocytes of surface epithelia. Furthermore, such analyses confirm and extend the notion that changes in keratin gene expression occur gradually as progenitor keratinocytes commit to and undergo differentiation, and challenge the prevailing assumption that specific keratin combinations reflect a mitotic versus a post-mitotic differentiating state. Our findings provide a blueprint for similar analyses in other tissues, and warrant a more nuanced approach in the use of keratin genes as biomarkers in epithelia.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine J. Redmond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raji R. Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
13
|
Liu B, Li A, Xu J, Cui Y. Single-Cell Transcriptional Analysis Deciphers the Inflammatory Response of Skin-Resident Stromal Cells. Front Surg 2022; 9:935107. [PMID: 35774389 PMCID: PMC9237500 DOI: 10.3389/fsurg.2022.935107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The skin is the outermost barrier of the body. It has developed a sophisticated system against the ever-changing environment. The application of single-cell technologies has revolutionized dermatology research and unraveled the changes and interactions across skin resident cells in the healthy and inflamed skin. Single-cell technologies have revealed the critical roles of stromal cells in an inflammatory response and explained a series of plausible previous findings concerning skin immunity. Here, we summarized the functional diversity of skin stromal cells defined by single-cell analyses and how these cells orchestrated events leading to inflammatory diseases, including atopic dermatitis, psoriasis, vitiligo, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Baoyi Liu
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ang Li
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingkai Xu
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
| | - Yong Cui
- Department of Dermatology, China–Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Correspondence: Yong Cui
| |
Collapse
|
14
|
Burja B, Paul D, Tastanova A, Edalat SG, Gerber R, Houtman M, Elhai M, Bürki K, Staeger R, Restivo G, Lang R, Sodin-Semrl S, Lakota K, Tomšič M, Levesque MP, Distler O, Rotar Ž, Robinson MD, Frank-Bertoncelj M. An Optimized Tissue Dissociation Protocol for Single-Cell RNA Sequencing Analysis of Fresh and Cultured Human Skin Biopsies. Front Cell Dev Biol 2022; 10:872688. [PMID: 35573685 PMCID: PMC9096112 DOI: 10.3389/fcell.2022.872688] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
We present an optimized dissociation protocol for preparing high-quality skin cell suspensions for in-depth single-cell RNA-sequencing (scRNA-seq) analysis of fresh and cultured human skin. Our protocol enabled the isolation of a consistently high number of highly viable skin cells from small freshly dissociated punch skin biopsies, which we use for scRNA-seq studies. We recapitulated not only the main cell populations of existing single-cell skin atlases, but also identified rare cell populations, such as mast cells. Furthermore, we effectively isolated highly viable single cells from ex vivo cultured skin biopsy fragments and generated a global single-cell map of the explanted human skin. The quality metrics of the generated scRNA-seq datasets were comparable between freshly dissociated and cultured skin. Overall, by enabling efficient cell isolation and comprehensive cell mapping, our skin dissociation-scRNA-seq workflow can greatly facilitate scRNA-seq discoveries across diverse human skin pathologies and ex vivo skin explant experimentations.
Collapse
Affiliation(s)
- Blaž Burja
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dominique Paul
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Sam G. Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Gerber
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Muriel Elhai
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kristina Bürki
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Staeger
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Ramon Lang
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Žiga Rotar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mark D. Robinson
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Mojca Frank-Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- BioMed X Institute, Heidelberg, Germany
| |
Collapse
|
15
|
Theocharidis G, Tekkela S, Veves A, McGrath JA, Onoufriadis A. Single-cell transcriptomics in human skin research: available technologies, technical considerations, and disease applications. Exp Dermatol 2022; 31:655-673. [PMID: 35196402 PMCID: PMC9311140 DOI: 10.1111/exd.14547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
Single‐cell technologies have revolutionized research in the last decade, including for skin biology. Single‐cell RNA sequencing has emerged as a powerful tool allowing the dissection of human disease pathophysiology at unprecedented resolution by assessing cell‐to‐cell variation, facilitating identification of rare cell populations and elucidating cellular heterogeneity. In dermatology, this technology has been widely applied to inflammatory skin disorders, fibrotic skin diseases, wound healing complications and cutaneous neoplasms. Here, we discuss the available technologies and technical considerations of single‐cell RNA sequencing and describe its applications to a broad spectrum of dermatological diseases.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stavroula Tekkela
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
16
|
Fang Y, Pei S, Huang K, Xu F, Xiang G, Lan L, Zheng X. Single-Cell Transcriptome Reveals the Metabolic and Clinical Features of a Highly Malignant Cell Subpopulation in Pancreatic Ductal Adenocarcinoma. Front Cell Dev Biol 2022; 10:798165. [PMID: 35252177 PMCID: PMC8894596 DOI: 10.3389/fcell.2022.798165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a high mortality rate. PDAC exhibits significant heterogeneity as well as alterations in metabolic pathways that are associated with its malignant progression. In this study, we explored the metabolic and clinical features of a highly malignant subgroup of PDAC based on single-cell transcriptome technology.Methods: A highly malignant cell subpopulation was identified at single-cell resolution based on the expression of malignant genes. The metabolic landscape of different cell types was analyzed based on metabolic pathway gene sets. In vitro experiments to verify the biological functions of the marker genes were performed. PDAC patient subgroups with highly malignant cell subpopulations were distinguished according to five glycolytic marker genes. Five glycolytic highly malignant-related gene signatures were used to construct the glycolytic highly malignant-related genes signature (GHS) scores.Results: This study identified a highly malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. The analysis of the metabolic pathway revealed that highly malignant cells had an abnormally active metabolism, and enhanced glycolysis was a major metabolic feature. Five glycolytic marker genes that accounted for the highly malignant cell subpopulations were identified, namely, EN O 1, LDHA, PKM, PGK1, and PGM1. An in vitro cell experiment showed that proliferation rates of PANC-1 and CFPAC-1 cell lines decreased after knockdown of these five genes. Patients with metabolic profiles of highly malignant cell subpopulations exhibit clinical features of higher mortality, higher mutational burden, and immune deserts. The GHS score evaluated using the five marker genes was an independent prognostic factor for patients with PDAC.Conclusion: We revealed a subpopulation of highly malignant cells in PDAC with enhanced glycolysis as the main metabolic feature. We obtained five glycolytic marker gene signatures, which could be used to identify PDAC patient subgroups with highly malignant cell subpopulations, and proposed a GHS prognostic score.
Collapse
Affiliation(s)
- Yangyang Fang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shunjie Pei
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Kaizhao Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Xu
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Guangxin Xiang
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Linhua Lan, ; Xiaoqun Zheng,
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Linhua Lan, ; Xiaoqun Zheng,
| |
Collapse
|
17
|
Han L, Jara CP, Wang O, Shi Y, Wu X, Thibivilliers S, Wóycicki RK, Carlson MA, Velander WH, Araújo EP, Libault M, Zhang C, Lei Y. Isolating and cryopreserving pig skin cells for single-cell RNA sequencing study. PLoS One 2022; 17:e0263869. [PMID: 35176067 PMCID: PMC8853494 DOI: 10.1371/journal.pone.0263869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/29/2022] [Indexed: 11/27/2022] Open
Abstract
The pig skin architecture and physiology are similar to those of humans. Thus, the pig model is very valuable for studying skin biology and testing therapeutics. The single-cell RNA sequencing (scRNA-seq) technology allows quantitatively analyzing cell types, compositions, states, signaling, and receptor-ligand interactome at single-cell resolution and at high throughput. scRNA-seq has been used to study mouse and human skins. However, studying pig skin with scRNA-seq is still rare. A critical step for successful scRNA-seq is to obtain high-quality single cells from the pig skin tissue. Here we report a robust method for isolating and cryopreserving pig skin single cells for scRNA-seq. We showed that pig skin could be efficiently dissociated into single cells with high cell viability using the Miltenyi Human Whole Skin Dissociation kit and the Miltenyi gentleMACS Dissociator. Furthermore, the obtained single cells could be cryopreserved using 90% FBS + 10% DMSO without causing additional cell death, cell aggregation, or changes in gene expression profiles. Using the developed protocol, we were able to identify all the major skin cell types. The protocol and results from this study are valuable for the skin research scientific community.
Collapse
Affiliation(s)
- Li Han
- School of Biological Science, University of Nebraska, Lincoln, Nebraska, United States of America
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Carlos P. Jara
- Nursing School, University of Campinas, Campinas SP, Brazil
- Laboratory of Cell Signaling, University of Campinas, Campinas SP, Brazil
| | - Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yu Shi
- School of Biological Science, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Xinran Wu
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Rafał K. Wóycicki
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Mark A. Carlson
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Surgery, University of Nebraska Medical Center and the VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Eliana P. Araújo
- Nursing School, University of Campinas, Campinas SP, Brazil
- Laboratory of Cell Signaling, University of Campinas, Campinas SP, Brazil
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Chi Zhang
- School of Biological Science, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Surgery, University of Nebraska Medical Center and the VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Sartorius Mammalian Cell Culture Facility, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
18
|
Ascensión AM, Araúzo-Bravo MJ, Izeta A. Challenges and Opportunities for the Translation of Single-Cell RNA Sequencing Technologies to Dermatology. Life (Basel) 2022; 12:67. [PMID: 35054460 PMCID: PMC8781146 DOI: 10.3390/life12010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Skin is a complex and heterogeneous organ at the cellular level. This complexity is beginning to be understood through the application of single-cell genomics and computational tools. A large number of datasets that shed light on how the different human skin cell types interact in homeostasis-and what ceases to work in diverse dermatological diseases-have been generated and are publicly available. However, translation of these novel aspects to the clinic is lacking. This review aims to summarize the state-of-the-art of skin biology using single-cell technologies, with a special focus on skin pathologies and the translation of mechanistic findings to the clinic. The main implications of this review are to summarize the benefits and limitations of single-cell analysis and thus help translate the emerging insights from these novel techniques to the bedside.
Collapse
Affiliation(s)
- Alex M. Ascensión
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Max Planck Institute for Molecular Biomedicine, 48167 Muenster, Germany
- IKERBASQUE, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ander Izeta
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- School of Engineering, Tecnun-University of Navarra, 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
19
|
Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma. Cell Death Dis 2021; 13:23. [PMID: 34934042 PMCID: PMC8692455 DOI: 10.1038/s41419-021-04477-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer characterized by high invasiveness, heterogeneity, and mainly occurs in the ultraviolet (UV)-exposed regions of the skin, but its pathogenesis is still unclear. Here, we generated single-cell transcriptome profiles for 350 cells from six primary UV-induced cSCCs, together with matched adjacent skin samples, and three healthy control skin tissues by single-cell RNA-sequencing technology based on Smart-seq2 strategy. A series of bioinformatics analyses and in vitro experiments were used to decipher and validate the critical molecular pattern of cSCC. Results showed that cSCC cells and normal keratinocytes were significantly distinct in gene expression and chromosomal copy number variation. Furthermore, cSCC cells exhibited 18 hallmark pathways of cancer by gene set enrichment analysis. Differential expression analysis demonstrated that many members belonging to S100 gene family, SPRR gene family, and FABP5 were significantly upregulated in cSCC cells. Further experiments confirmed their upregulation and showed that S100A9 or FABP5 knockdown in cSCC cells inhibited their proliferation and migration through NF-κB pathway. Taken together, our data provide a valuable resource for deciphering the molecular pattern in UV-induced cSCC at a single-cell level and suggest that S100A9 and FABP5 may provide novel targets for therapeutic intervention of cSCC in the future.
Collapse
|
20
|
Sun H, Zhang YX, Li YM. Generation of Skin Organoids: Potential Opportunities and Challenges. Front Cell Dev Biol 2021; 9:709824. [PMID: 34805138 PMCID: PMC8600117 DOI: 10.3389/fcell.2021.709824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although several types of human skin substitutes are currently available, they usually do not include important skin appendages such as hair follicles and sweat glands, or various skin-related cells, such as dermal adipocytes and sensory neurons. This highlights the need to improve the in vitro human skin generation model for use as a tool for investigating skin diseases and as a source of cells or tissues for skin regeneration. Skin organoids are generated from stem cells and are expected to possess the complexity and function of natural skin. Here, we summarize the current literatures relating to the "niches" of the local skin stem cell microenvironment and the formation of skin organoids, and then discuss the opportunities and challenges associated with multifunctional skin organoids.
Collapse
Affiliation(s)
- Hui Sun
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi-Xuan Zhang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Chung KB, Oh J, Roh WS, Kim TG, Kim DY. Core Gene Signatures of Atopic Dermatitis Using Public RNA-Sequencing Resources: Comparison of Bulk Approach with Single-Cell Approach. J Invest Dermatol 2021; 142:717-721.e5. [PMID: 34454907 DOI: 10.1016/j.jid.2021.07.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Kyung Bae Chung
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea; Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jongwook Oh
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea; Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Roh
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea; Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea; Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea; Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Doña I, Jurado-Escobar R, Pérez-Sánchez N, Laguna JJ, Bartra J, Testera-Montes A, de Santa María RS, Torres MJ, Cornejo-García JA. Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine? CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-020-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ascensión AM, Fuertes-Álvarez S, Ibañez-Solé O, Izeta A, Araúzo-Bravo MJ. Human Dermal Fibroblast Subpopulations Are Conserved across Single-Cell RNA Sequencing Studies. J Invest Dermatol 2020; 141:1735-1744.e35. [PMID: 33385399 DOI: 10.1016/j.jid.2020.11.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
On the basis of their differential location within the dermis and of discrete changes in gene and protein expression, two major fibroblast subtypes (papillary and reticular) have traditionally been distinguished. In the last 3 years, a number of research groups have begun to address transcriptomic heterogeneity of human skin cells at the single-cell level by determining mRNA levels of expressed genes through single-cell RNA sequencing technologies. However, the outcome of single-cell RNA sequencing studies is thus far confusing. Very little overlap was found in fibroblast subpopulations, which also varied in number and composition in each dataset. After a careful reappraisal of the transcriptomic data of 13,823 human adult dermal fibroblasts that have been sequenced to date, we show that fibroblasts may robustly be assigned to three major types (axes A‒C), which in turn are composed of 10 major subtypes (clusters), which we denominated A1‒A4, B1 and B2, and C1‒C4. These computationally determined axes and clusters represent the major fibroblast types and subtypes in adult healthy human skin across different datasets, accounting for 92.5% of the sequenced fibroblasts. They thus may provide the basis to improve our understanding of dermal homeostasis and cellular function at the transcriptomic level.
Collapse
Affiliation(s)
- Alex M Ascensión
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Olga Ibañez-Solé
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Izeta
- Tissue Engineering Group, Biodonostia Health Research Institute, San Sebastian, Spain; Department of Biomedical Engineering and Science, School of Engineering, Tecnun-University of Navarra, San Sebastian, Spain.
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, San Sebastian, Spain; Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; CIBER of Frailty and Healthy Aging (CIBERfes), Madrid, Spain
| |
Collapse
|