1
|
Alexander MH, Cousins WJ, Ewen T, South AP, Lovat P, Stefanos N. The combined immunohistochemical expression of AMBRA1 and SQSTM1 identifies patients with poorly differentiated cutaneous squamous cell carcinoma at risk of metastasis: A proof of concept study. J Cutan Pathol 2024; 51:450-458. [PMID: 38421158 DOI: 10.1111/cup.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) incidence continues to increase globally with, as of yet, an unmet need for reliable prognostic biomarkers to identify patients at increased risk of metastasis. The aim of the present study was to test the prognostic potential of the combined immunohistochemical expression of the autophagy regulatory biomarkers, AMBRA1 and SQSTM1, to identify high-risk patient subsets. METHODS A retrospective cohort of 68 formalin-fixed paraffin-embedded primary cSCCs with known 5-year metastatic outcomes were subjected to automated immunohistochemical staining for AMBRA1 and SQSTM1. Digital images of stained slides were annotated to define four regions of interest: the normal and peritumoral epidermis, the tumor mass, and the tumor growth front. H-score analysis was used to semi-quantify AMBRA1 or SQSTM1 expression in each region of interest using Aperio ImageScope software, with receiver operator characteristics and Kaplan-Meier analysis used to assess prognostic potential. RESULTS The combined loss of expression of AMBRA1 in the tumor growth front and SQSTM1 in the peritumoral epidermis identified patients with poorly differentiated cSCCs at risk of metastasis (*p < 0.05). CONCLUSIONS Collectively, these proof of concept data suggest loss of the combined expression of AMBRA1 in the cSCC growth front and SQSTM1 in the peritumoral epidermis as a putative prognostic biomarker for poorly differentiated cSCC.
Collapse
Affiliation(s)
- Michael H Alexander
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William J Cousins
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Tom Ewen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Penny Lovat
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- AMLo Biosciences, Newcastle Helix, Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Niki Stefanos
- Cellular Pathology, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
2
|
Azimi A, Jabbour S, Patrick E, Fernandez-Penas P. Non-invasive diagnosis of early cutaneous squamous cell carcinoma. Exp Dermatol 2023; 32:1946-1959. [PMID: 37688398 DOI: 10.1111/exd.14921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Early cutaneous squamous cell carcinoma (cSCC) can be challenging to diagnose using clinical criteria as it could present similar to actinic keratosis (AK) or Bowen's disease (BD), precursors of cSCC. Currently, histopathological assessment of an invasive biopsy is the gold standard for diagnosis. A non-invasive diagnostic approach would reduce patient and health system burden. Therefore, this study used non-invasive sampling by tape-stripping coupled with data-independent acquisition mass spectrometry (DIA-MS) proteomics to profile the proteome of histopathologically diagnosed AK, BD and cSCC, as well as matched normal samples. Proteomic data were analysed to identify proteins and biological functions that are significantly different between lesions. Additionally, a support vector machine (SVM) machine learning algorithm was used to assess the usefulness of proteomic data for the early diagnosis of cSCC. A total of 696 proteins were identified across the samples studied. A machine learning model constructed using the proteomic data classified premalignant (AK + BD) and malignant (cSCC) lesions at 77.5% accuracy. Differential abundance analysis identified 144 and 21 protein groups that were significantly changed in the cSCC, and BD samples compared to the normal skin, respectively (adj. p < 0.05). Changes in pivotal carcinogenic pathways such as LXR/RXR activation, production of reactive oxygen species, and Hippo signalling were observed that may explain the progression of cSCC from premalignant lesions. In summary, this study demonstrates that DIA-MS analysis of tape-stripped samples can identify non-invasive protein biomarkers with the potential to be developed into a complementary diagnostic tool for early cSCC.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Steven Jabbour
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Azimi A, Fernandez-Peñas P. Molecular Classifiers in Skin Cancers: Challenges and Promises. Cancers (Basel) 2023; 15:4463. [PMID: 37760432 PMCID: PMC10526380 DOI: 10.3390/cancers15184463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Skin cancers are common and heterogenous malignancies affecting up to two in three Australians before age 70. Despite recent developments in diagnosis and therapeutic strategies, the mortality rate and costs associated with managing patients with skin cancers remain high. The lack of well-defined clinical and histopathological features makes their diagnosis and classification difficult in some cases and the prognostication difficult in most skin cancers. Recent advancements in large-scale "omics" studies, including genomics, transcriptomics, proteomics, metabolomics and imaging-omics, have provided invaluable information about the molecular and visual landscape of skin cancers. On many occasions, it has refined tumor classification and has improved prognostication and therapeutic stratification, leading to improved patient outcomes. Therefore, this paper reviews the recent advancements in omics approaches and appraises their limitations and potential for better classification and stratification of skin cancers.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Pablo Fernandez-Peñas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
4
|
Azimi A, Patrick E, Teh R, Kim J, Fernandez-Penas P. Proteomic profiling of cutaneous melanoma explains the aggressiveness of distant organ metastasis. Exp Dermatol 2023. [PMID: 37082900 DOI: 10.1111/exd.14814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Despite recent developments in managing metastatic melanomas, patients' overall survival remains low. Therefore, the current study aims to understand better the proteome-wide changes associated with melanoma metastasis that will assist with identifying targeted therapies. The latest development in mass spectrometry-based proteomics, together with extensive bioinformatics analysis, was used to investigate the molecular changes in 60 formalin-fixed and paraffin-embedded samples of primary and lymph nodes (LN) and distant organ metastatic melanomas. A total of 4631 proteins were identified, of which 72 and 453 were significantly changed between the LN and distant organ metastatic melanomas compared to the primary lesions (adj. p-value <0.05). An increase in proteins such as SLC9A3R1, CD20 and GRB2 and a decrease in CST6, SERPINB5 and ARG1 were associated with regional LN metastasis. By contrast, increased metastatic activities in distant organ metastatic melanomas were related to higher levels of CEACAM1, MC1R, AKT1 and MMP3-9 and decreased levels of CDKN2A, SDC1 and SDC4 proteins. Furthermore, machine learning analysis classified the lesions with up to 92% accuracy based on their metastatic status. The findings from this study provide up to date proteome-level information about the progression of melanomas to regional LN and distant organs, leading to the identification of protein signatures with potential for clinical translation.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rachel Teh
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Jennifer Kim
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
5
|
Tao Y, Xiao‐hong L, Guo‐lin K, hua H, Jia‐hui J, Chao C. The value of ACTN1 in the diagnosis of cutaneous squamous cell carcinoma: A continuation study. Skin Res Technol 2023; 29:e13252. [PMID: 37113080 PMCID: PMC10234166 DOI: 10.1111/srt.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Affiliation(s)
- Yuan Tao
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Lu Xiao‐hong
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Ke Guo‐lin
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Hu hua
- Department of DermatologyThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Jiang Jia‐hui
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Ci Chao
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| |
Collapse
|
6
|
Tsang DA, Tam SYC, Oh CC. Molecular Alterations in Cutaneous Squamous Cell Carcinoma in Immunocompetent and Immunosuppressed Hosts-A Systematic Review. Cancers (Basel) 2023; 15:1832. [PMID: 36980718 PMCID: PMC10046480 DOI: 10.3390/cancers15061832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The characterization of cutaneous squamous cell carcinoma (cSCC) at the molecular level is lacking in the current literature due to the high mutational burden of this disease. Immunosuppressed patients afflicted with cSCC experience considerable morbidity and mortality. In this article, we review the molecular profile of cSCC among the immunosuppressed and immunocompetent populations at the genetic, epigenetic, transcriptomic, and proteometabolomic levels, as well as describing key differences in the tumor immune microenvironment between these two populations. We feature novel biomarkers from the recent literature which may serve as potential targets for therapy.
Collapse
Affiliation(s)
- Denise Ann Tsang
- Department of Dermatology, Singapore General Hospital, Singapore 169608, Singapore;
| | - Steve Y. C. Tam
- Education Resource Centre, Singapore General Hospital, Singapore 169608, Singapore
| | - Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital, Singapore 169608, Singapore;
- Duke-NUS Medical School, Singapore 169608, Singapore
| |
Collapse
|
7
|
Qureshi HA, Azimi A, Wells J, Fernandez-Penas P. Tape stripped stratum corneum samples are suitable for diagnosis and comprehensive proteomic investigation in mycosis fungoides. Proteomics Clin Appl 2023; 17:e2200039. [PMID: 36824058 DOI: 10.1002/prca.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Mycosis Fungoides (MF) is a common cutaneous T-cell lymphoma. It can sometimes be challenging to diagnose MF using current clinico-histopathological criteria. Non-invasive molecular profiling analysis has the potential to aid the diagnosis and understanding of MF. METHOD Lesional and body site matched normal stratum corneum samples were obtained from the same MF patients (n = 28) using adhesive discs, followed by proteomic analyses using data-independent acquisition mass spectrometry (DIA-MS). Differential abundance analyses and bioinformatic analyses were performed to identify differentially abundant proteins and altered biofunctions between the MF and normal stratum corneum samples. RESULTS In total, 1303 proteins were identified, of which 290 proteins were significantly changed in the MF cohort compared to the normal stratum corneum. Ingenuity pathway analysis (IPA) predicted the significant inhibition of cell death of cancer cells and significant activation of immune-related activities and viral infection in the MF lesions. MF lesions were also associated with upstream regulators relating to immuno-oncologic dysfunctions. The top-250 variating proteins efficiently separated normal stratum corneum from matched MF samples. CONCLUSION Non-invasive proteomic analysis could transform the diagnosis of MF by reducing the need for invasive biopsy. The identification of altered biological functions may serve as useful biomarkers to predict MF progression.
Collapse
Affiliation(s)
- Hafsa Anees Qureshi
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ali Azimi
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Jillian Wells
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
8
|
Azimi A, Teh R, Fernandez-Penas P. Mass spectrometry-based proteomic analysis of the effect of storage temperature on non-invasively collected samples of human stratum corneum. Proteomics Clin Appl 2021; 15:e2100005. [PMID: 34009731 DOI: 10.1002/prca.202100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE The collection of human stratum corneum (SC) samples by tape-stripping promises to deliver a non-invasive method for biomarker analysis of skin diseases. The current study examines the effect of storage temperature and SC layer depth on the proteome profile of SC samples. EXPERIMENTAL DESIGN The samples were collected from healthy volunteers (n = 5) using 10 sequential adhesive discs. Discs were pooled by five (discs 1-5, 6-10) and stored at various temperatures for 10 days before their analysis by mass spectrometry. RESULTS No statistically significant difference was seen in the protein yield between discs 1-5 (14.8 mg) and 6-10 (14.4 mg), or between discs stored at -80°C (14.7 mg), -20°C (15.8 mg), 4°C (14.9 mg) or room temperature (13.2 mg). Mass spectrometry analysis revealed that the storage of SC samples at higher temperatures does not affect their proteome profile considerably (< 4.7% peptide precursor loss at lower temperatures vs. -80°C). On the other hand, while 95.3% of the identified peptide precursors were shared between discs 1-5 and 6-10, the level of 17 proteins was significantly changed between these conditions. CONCLUSIONS The findings of this study will likely have major implications on the conduct of proteomic studies involving SC sample collection, storage, and transportation.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Rachel Teh
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
Cystatin M/E (Cystatin 6): A Janus-Faced Cysteine Protease Inhibitor with Both Tumor-Suppressing and Tumor-Promoting Functions. Cancers (Basel) 2021; 13:cancers13081877. [PMID: 33919854 PMCID: PMC8070812 DOI: 10.3390/cancers13081877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.
Collapse
|