1
|
Rothenberg-Lausell C, Bar J, Dahabreh D, Renert-Yuval Y, Del Duca E, Guttman-Yassky E. Biologic and small-molecule therapy for treating moderate to severe atopic dermatitis: Mechanistic considerations. J Allergy Clin Immunol 2024; 154:20-30. [PMID: 38670231 DOI: 10.1016/j.jaci.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Atopic dermatitis (AD) is a complex and heterogeneous skin disease for which achieving complete clinical clearance for most patients has proven challenging through single cytokine inhibition. Current studies integrate biomarkers and evaluate their role in AD, aiming to advance our understanding of the diverse molecular profiles implicated. Although traditionally characterized as a TH2-driven disease, extensive research has recently revealed the involvement of TH1, TH17, and TH22 immune pathways as well as the interplay of pivotal immune molecules, such as OX40, OX40 ligand (OX40L), thymic stromal lymphopoietin, and IL-33. This review explores the mechanistic effects of treatments for AD, focusing on mAbs and Janus kinase inhibitors. It describes how these treatments modulate immune pathways and examines their impact on key inflammatory and barrier biomarkers.
Collapse
Affiliation(s)
- Camille Rothenberg-Lausell
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jonathan Bar
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dante Dahabreh
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Renert-Yuval
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Pediatric Dermatology Unit, Schneider Children's Medical Center of Israel and the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Dermatology, University of La Sapienza, Rome, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
2
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
3
|
Munera-Campos M, Carrascosa JM. Janus Kinase Inhibitors in Atopic Dermatitis: New Perspectives. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:680-707. [PMID: 37105270 DOI: 10.1016/j.ad.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway is an essential final step in the signaling process of most interleukins with a critical role in the pathogenesis of atopic dermatitis. By achieving broad, intermittent inhibition of the activity of multiple cytokines, JAK inhibitors help modulate T helper 2 cell-mediated inflammation, epidermal barrier dysfunction, and itch signaling. This comprehensive blockade, however, can result in a wider range of adverse effects. We review a number of JAK inhibitors that have been recently approved for use in atopic dermatitis, such as baricitinib, upadacitinib, and abrocitinib, as well as others that are currently in the pipeline or under development, such as gusacitinib, delgocitinib, ruxolitinib, brepocitinib, tofacitinib, and cerdulatinib. The use of JAK inhibitors to block the signaling of numerous cytokines with a critical role in the pathogenesis of atopic dermatitis has revolutionized the treatment of this pathogenically complex, phenotypically heterogeneous skin disease.
Collapse
Affiliation(s)
- M Munera-Campos
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Instituto de Investigación Germans Trias i Pujol (IGTP), Badalona, Barcelona, España.
| | - J M Carrascosa
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Instituto de Investigación Germans Trias i Pujol (IGTP), Badalona, Barcelona, España
| |
Collapse
|
4
|
Munera-Campos M, Carrascosa JM. [Translated article] Janus Kinase Inhibitors in Atopic Dermatitis: New Perspectives. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T680-T707. [PMID: 37453538 DOI: 10.1016/j.ad.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/13/2023] [Indexed: 07/18/2023] Open
Abstract
The JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway is an essential final step in the signaling process of most interleukins with a critical role in the pathogenesis of atopic dermatitis. By achieving broad, intermittent inhibition of the activity of multiple cytokines, JAK inhibitors help to modulate T helper 2 cell-mediated inflammation, epidermal barrier dysfunction, and itch signaling. This comprehensive blockade, however, can result in a wider range of adverse effects. We review a number of JAK inhibitors that have been recently approved for use in atopic dermatitis, such as baricitinib, upadacitinib, and abrocitinib, as well as others that are currently in the pipeline or under development, such as gusacitinib, delgocitinib, ruxolitinib, brepocitinib, tofacitinib, and cerdulatinib. The use of JAK inhibitors to block the signaling of numerous cytokines with a critical role in the pathogenesis of atopic dermatitis has revolutionized the treatment of this pathogenically complex, phenotypically heterogeneous skin disease.
Collapse
Affiliation(s)
- M Munera-Campos
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Instituto de Investigación Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain.
| | - J M Carrascosa
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Instituto de Investigación Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| |
Collapse
|
5
|
Oral Janus kinase inhibitors for atopic dermatitis. Ann Allergy Asthma Immunol 2023; 130:577-592. [PMID: 36736457 DOI: 10.1016/j.anai.2023.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin conditions. The pathogenesis of AD involves skin barrier disruption and immune activation of T-helper (TH)2 and TH22 and varying degrees of TH1 and TH17 activation in various patient subtypes. Although AD is mainly driven by TH2, the molecular and clinical heterogeneity of AD underscores the need for more efficacious treatments that target multiple immune axes. Janus kinase (JAK) inhibitors are novel therapeutics that broadly block many AD-related proinflammatory cytokines (interleukin [IL]-4, IL-5, IL-13, IL-31, thymic stromal lymphopoietin, interferon gamma, IL-12, IL-23, IL-17) across different immune pathways. Oral JAK inhibitors have been found to be efficacious in AD, with 2 (abrocitinib and upadacitinib) recently gaining US Food and Drug Administration approval and several others under investigation in clinical trials with promising results. These systemic agents have surpassed conventional thresholds of treatment response, with many patients achieving complete or almost complete skin clearance, and provide a fast-acting alternative therapy for patients who are not responsive to biologics or other conventional therapies. However, systemic JAK inhibitors come with health concerns, requiring additional long-term clinical trials to characterize their safety profile in patients with AD. This review summarizes the current literature on the safety and efficacy of oral JAK inhibitors in AD and discusses future directions for research.
Collapse
|
6
|
Douladiris N, Vakirlis E, Vassilopoulou E. Atopic Dermatitis and Water: Is There an Optimum Water Intake Level for Improving Atopic Skin? CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020273. [PMID: 36832402 PMCID: PMC9954916 DOI: 10.3390/children10020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Water is a vital nutrient with innumerable functions for every living cell. The functions of human skin include protection against dehydration of the body. Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease that presents with dry skin, erythematous and eczematous lesions, and lichenification. This paper discusses the question of whether extra water intake in children with AD affects skin hydration and the skin barrier function. Among the methods used to treat dry skin, topical leave-on products are the first-line treatment, intended to improve hydration and the skin barrier function. The effectiveness of adequate water intake as a measure to treat dry skin is still under debate. Normal skin hydration increases with dietary water intake, particularly in those with prior lower water consumption. Skin dryness in AD is instrumental to the itch and inflammation cycle, contributing to barrier impairment and aggravating disease severity and flares. Certain emollients provide significant hydration to AD skin, with relief of dryness and reduction in barrier impairment, disease severity, and flares. Further investigations are needed to evaluate the optimum water intake levels in children with AD, as important questions remain unanswered, namely, does oral hydration provide relief of skin dryness and reduce barrier impairment, disease severity, and flares; is there any additional benefit from using mineral or thermal spring water; or is there a need to specifically study the fluid/water intake in children with AD and food allergy (FA) restrictions?
Collapse
Affiliation(s)
- Nikolaos Douladiris
- Allergy Unit, 2nd Pediatric Clinic, University of Athens, 11527 Athens, Greece
- Correspondence:
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
7
|
Pan Y, Du D, Wang L, Wang X, He G, Jiang X. The Role of T Helper 22 Cells in Dermatological Disorders. Front Immunol 2022; 13:911546. [PMID: 35911703 PMCID: PMC9331286 DOI: 10.3389/fimmu.2022.911546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
T helper 22 (Th22) cells are a newly identified subset of CD4+ T cells that secrete the effector cytokine interleukin 22 (IL-22) upon specific antigen stimulation, barely with IFN-γ or IL-17. Increasing studies have demonstrated that Th22 cells and IL-22 play essential roles in skin barrier defense and skin disease pathogenesis since the IL-22 receptor is widely expressed in the skin, especially in keratinocytes. Herein, we reviewed the characterization, differentiation, and biological activities of Th22 cells and elucidated their roles in skin health and disease. We mainly focused on the intricate crosstalk between Th22 cells and keratinocytes and provided potential therapeutic strategies targeting the Th22/IL-22 signaling pathway.
Collapse
Affiliation(s)
- Yu Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Gu He, ; Xian Jiang,
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Gu He, ; Xian Jiang,
| |
Collapse
|