1
|
Dong J, Peng Z, Chen M, Lai Y, Zhang X, Yu M, Zhong H, Liu J, Yue Y, Shang J. Long Non-Coding RNA Mir17hg Positively Regulates Melanogenesis by Inhibiting TGFβ Receptor 2 under Psychological Stress. J Invest Dermatol 2024; 144:358-368.e10. [PMID: 37709007 DOI: 10.1016/j.jid.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Vitiligo is a common skin depigmentation disorder characterized by the patchy loss of skin color. Nowadays, it is recognized as being correlated with multiple genetic factors as well as the psychological conditions of individuals. Long noncoding RNAs have been reported to underlie the pathogenesis of vitiligo; however, the role of long noncoding RNAs in the stress-related depigmentation process remains largely unknown. In this study, the inhibition of melanocyte function was observed in C57BL/6J mice modeled through chronic restraint stress. Furthermore, downregulation of the expression of the long noncoding RNAs Mir17hg was identified using RNA sequencing. The regulatory role of Mir17hg in melanogenesis was also investigated in melanocytes and zebrafish embryos through overexpression or knockdown. Finally, TGFβ receptor 2 was shown to be a downstream target in Mir17hg-mediated melanogenesis regulation, in which the classical TGFβ/SMAD signaling cascade and the PI3K/AKT/mTOR signaling cascade play important roles. In conclusion, our results revealed an important regulatory role of Mir17hg in melanogenesis through inhibition of TGFβR2, which can provide a potential therapeutic target for treating skin depigmentation disorders.
Collapse
Affiliation(s)
- Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zan Peng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghan Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yifan Lai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
2
|
Zhang H, Wang M, Zhao X, Wang Y, Chen X, Su J. Role of stress in skin diseases: A neuroendocrine-immune interaction view. Brain Behav Immun 2024; 116:286-302. [PMID: 38128623 DOI: 10.1016/j.bbi.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Psychological stress is a crucial factor in the development of many skin diseases, and the stigma caused by skin disorders may further increase the psychological burden, forming a vicious cycle of psychological stress leading to skin diseases. Therefore, understanding the relationship between stress and skin diseases is necessary. The skin, as the vital interface with the external environment, possesses its own complex immune system, and the neuroendocrine system plays a central role in the stress response of the body. Stress-induced alterations in the immune system can also disrupt the delicate balance of immune cells and inflammatory mediators in the skin, leading to immune dysregulation and increased susceptibility to various skin diseases. Stress can also affect the skin barrier function, impair wound healing, and promote the release of pro-inflammatory cytokines, thereby exacerbating existing skin diseases such as psoriasis, atopic dermatitis, acne, and urticaria. In the present review, we explored the intricate relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective. We explored the occurrence and development of skin diseases in the context of stress, the stress models for skin diseases, the impact of stress on skin function and diseases, and relevant epidemiological studies and clinical trials. Understanding the relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective provides a comprehensive framework for targeted interventions and new insights into the diagnosis and treatment of skin diseases.
Collapse
Affiliation(s)
- Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Mi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Department of Mental Health Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Yujie Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| |
Collapse
|
3
|
Wang X, Wu W, Chen J, Li C, Li S. Management of the refractory vitiligo patient: current therapeutic strategies and future options. Front Immunol 2024; 14:1294919. [PMID: 38239366 PMCID: PMC10794984 DOI: 10.3389/fimmu.2023.1294919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Vitiligo is an autoimmune disease that leads to disfiguring depigmented lesions of skin and mucosa. Although effective treatments are available for vitiligo, there are still some patients with poor responses to conventional treatment. Refractory vitiligo lesions are mostly located on exposed sites such as acral sites and lips, leading to significant life stress. Understanding the causes of refractory vitiligo and developing targeted treatments are essential to enhance vitiligo outcomes. In this review, we summarized recent treatment approaches and some potential methods for refractory vitiligo. Janus kinase inhibitors have shown efficacy in refractory vitiligo. A variety of surgical interventions and fractional carbon dioxide laser have been widely applied to combination therapies. Furthermore, melanocyte regeneration and activation therapies are potentially effective strategies. Patients with refractory vitiligo should be referred to psychological monitoring and interventions to reduce the potential pathogenic effects of chronic stress. Finally, methods for depigmentation and camouflage may be beneficial in achieving uniform skin color and improved quality of life. Our ultimate focus is to provide alternative options for refractory vitiligo and to bring inspiration to future research.
Collapse
Affiliation(s)
| | | | | | | | - Shuli Li
- *Correspondence: Shuli Li, ; Chunying Li,
| |
Collapse
|
4
|
Dong J, Lai Y, Zhang X, Yue Y, Zhong H, Shang J. Optimization of Monobenzone-Induced Vitiligo Mouse Model by the Addition of Chronic Stress. Int J Mol Sci 2023; 24:ijms24086990. [PMID: 37108153 PMCID: PMC10138324 DOI: 10.3390/ijms24086990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Vitiligo is a common primary, limited or generalized skin depigmentation disorder. Its pathogenesis is complex, multifactorial and unclear. For this reason, few animal models can simulate the onset of vitiligo, and studies of drug interventions are limited. Studies have found that there may be a pathophysiological connection between mental factors and the development of vitiligo. At present, the construction methods of the vitiligo model mainly include chemical induction and autoimmune induction against melanocytes. Mental factors are not taken into account in existing models. Therefore, in this study, mental inducement was added to the monobenzone (MBEH)-induced vitiligo model. We determined that chronic unpredictable mild stress (CUMS) inhibited the melanogenesis of skin. MBEH inhibited melanin production without affecting the behavioral state of mice, but mice in the MBEH combined with CUMS (MC) group were depressed and demonstrated increased depigmentation of the skin. Further analysis of metabolic differences showed that all three models altered the metabolic profile of the skin. In summary, we successfully constructed a vitiligo mouse model induced by MBEH combined with CUMS, which may be better used in the evaluation and study of vitiligo drugs.
Collapse
Affiliation(s)
- Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Lai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|