1
|
Li Y, Fan A, Zhang Y, Meng W, Pan W, Wu F, Ma Z, Chen W. Circular RNA hsa_circ_0001610 promotes prostate cancer progression by sponging miR-1324 and upregulating PTK6. Gene 2024; 930:148818. [PMID: 39098513 DOI: 10.1016/j.gene.2024.148818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Prostate cancer (PCa) incidence and cancer-related deaths are both high in the male population. Once castration-resistant prostate cancer (CRPC) has developed, PCa can be difficult to manage. Circular RNAs (circRNAs) play essential roles in the regulation of carcinogenesis and cancer progression. In CRPC, however, the potential molecular mechanisms and biological functions of circRNAs are yet to be defined. In this study, we conducted RNA sequencing on four hormone-sensitive prostate cancer (HSPC) tumor tissue samples and three CRPC samples. We recognized hsa_circ_0001610, a novel circRNA that was highly expressed in the cells and tissue of CRPC. We used quantitative real-time PCR (qRT-PCR) to evaluate hsa_circ_0001610 expression. We conducted in vivo and in vitro experiments and found that hsa_circ_0001610 overexpression caused PCa cells to proliferate and migrate and caused enzalutamide resistance. In contrast, the opposite results were found for hsa_circ_0001610 knockdown. We used Western blot, dual-luciferase reporter assays, RNA immunoprecipitation (RIP), qRT-PCR, and rescue experiments to reveal the underlying mechanisms of hsa_circ_0001610. Mechanistically, hsa_circ_0001610 acted as a molecular sponge for miR-1324 and thus reversed its inhibitory effect on its target gene PTK6. As a result, the PTK6 expression was enhanced, which accelerated PCa progression. The findings of this study confirmed that hsa_circ_0001610 drives the progression of PCa through the hsa_circ_0001610/miR-1324/PTK6 axis. Thus, hsa_circ_0001610 is potentially an effective therapeutic target and specific biomarker for advanced PCa.
Collapse
Affiliation(s)
- Yunpeng Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Aoyu Fan
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yunyan Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei Meng
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Pan
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Wei Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
2
|
Liu D, Hu X, Ding X, Li M, Ding L. Inflammatory Effects and Regulatory Mechanisms of Chitinase-3-like-1 in Multiple Human Body Systems: A Comprehensive Review. Int J Mol Sci 2024; 25:13437. [PMCID: PMC11678640 DOI: 10.3390/ijms252413437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization. Accumulating evidence has verified that Chi3l1 is involved in diverse inflammatory conditions; however, a systematic and comprehensive understanding of the roles and mechanisms of Chi3l1 in almost all human body system-related inflammatory diseases is still lacking. The human body consists of ten organ systems, which are combinations of multiple organs that perform one or more physiological functions. Abnormalities in these human systems can trigger a series of inflammatory environments, posing serious threats to the quality of life and lifespan of humans. Therefore, exploring novel and reliable biomarkers for these diseases is highly important, with Chi3l1 being one such parameter because of its physiological and pathophysiological roles in the development of multiple inflammatory diseases. Reportedly, Chi3l1 plays an important role in diagnosing and determining disease activity/severity/prognosis related to multiple human body system inflammation disorders. Additionally, many studies have revealed the influencing factors and regulatory mechanisms (e.g., the ERK and MAPK pathways) of Chi3l1 in these inflammatory conditions, identifying potential novel therapeutic targets for these diseases. In this review, we comprehensively summarize the potential roles and underlying mechanisms of Chi3l1 in inflammatory disorders of the respiratory, digestive, circulatory, nervous, urinary, endocrine, skeletal, muscular, and reproductive systems, which provides a more systematic understanding of Chi3l1 in multiple human body system-related inflammatory diseases. Moreover, this article summarizes potential therapeutic strategies for inflammatory diseases in these systems on the basis of the revealed roles and mechanisms mediated by Chi3l1.
Collapse
Affiliation(s)
- Dong Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Xin Hu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming 650500, China;
| | - Xiao Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| |
Collapse
|
3
|
Cheng S, Li C, Liu L, Liu X, Li M, Zhuo J, Wang J, Zheng W, Wang Z. Dysregulation and antimetastatic function of circLRIG1 modulated by miR-214-3p/LRIG1 axis in bladder carcinoma. Biol Direct 2024; 19:20. [PMID: 38454507 PMCID: PMC10918934 DOI: 10.1186/s13062-023-00446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/19/2023] [Indexed: 03/09/2024] Open
Abstract
CircLRIG1, a newly discovered circRNA, has yet to have its potential function and biological processes reported. This study explored the role of circLRIG1 in the development and progression of bladder carcinoma and its potential molecular mechanisms. Techniques such as qRT-PCR, Western blot, various cellular assays, and in vivo models were used to investigate mRNA and protein levels, cell behavior, molecular interactions, and tumor growth. The results showed that both circLRIG1 and LRIG1 were significantly reduced in bladder carcinoma tissues and cell lines. Low circLRIG1 expression was associated with poor patient prognosis. Overexpressing circLRIG1 inhibited bladder carcinoma cell growth, migration, and invasion, promoted apoptosis, and decreased tumor growth and metastasis in vivo. Importantly, circLRIG1 was found to sponge miR-214-3p, enhancing LRIG1 expression, and its overexpression also modulated protein levels of E-cadherin, N-cadherin, Vimentin, and LRIG1. Similar effects were observed with LRIG1 overexpression. Notably, a positive correlation was found between circLRIG1 and LRIG1 expression in bladder carcinoma tissues. Additionally, the tumor-suppressing effect of circLRIG1 was reversed by overexpressing miR-214-3p or silencing LRIG1. The study concludes that circLRIG1 suppresses bladder carcinoma progression by enhancing LRIG1 expression via sponging miR-214-3p, providing a potential strategy for early diagnosis and treatment of bladder carcinoma.
Collapse
Affiliation(s)
- Shiliang Cheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan Xingqi Medical Laboratory Co., Ltd., 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China.
| | - Chunguang Li
- Department of Digestive Oncology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, ShenyangLiaoning, 110042, China
| | - Lu Liu
- Department of Digestive Oncology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, ShenyangLiaoning, 110042, China
| | - Xinli Liu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Meng Li
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Jinhua Zhuo
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Jue Wang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Wen Zheng
- Department of Emergency, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China.
| | - Zhongmin Wang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, 225 Changhai Road, Shanghai, 200000, China.
| |
Collapse
|