1
|
Peña-Montes DJ, Huerta-Cervantes M, Riveros-Rosas H, Manzo-Avalos S, Aguilera-Méndez A, Huerta M, Trujillo X, Cortés-Rojo C, Montoya-Pérez R, Salgado-Garciglia R, Saavedra-Molina A. Iron chelation mitigates mitochondrial dysfunction and oxidative stress by enhancing nrf2-mediated antioxidant responses in the renal cortex of a murine model of type 2 diabetes. Mitochondrion 2024; 78:101937. [PMID: 39004262 DOI: 10.1016/j.mito.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Renal iron overload is a common complication of diabetes that leads to oxidative stress and mitochondrial dysfunction in the kidneys. This study investigated the effects of iron chelation using deferiprone on mitochondrial dysfunction and oxidative stress in the renal cortex of a murine model of type 2 diabetes. Diabetic rats were treated with deferiprone (50 mg/kg BW) for 16 weeks. Our results show that iron chelation with deferiprone significantly increased the nuclear accumulation of Nrf2, a transcription factor that regulates the expression of antioxidant enzymes. This led to enhanced antioxidant capacity, reduced production of reactive oxygen species, and improved mitochondrial bioenergetic function in diabetic rats. However, chronic iron chelation led to altered mitochondrial respiration and increased oxidative stress in non-diabetic rats. In conclusion, our findings suggest that iron chelation with deferiprone protects mitochondrial bioenergetics and mitigates oxidative stress in the renal cortex, involving the NRF2 pathway in type 2 diabetes.
Collapse
Affiliation(s)
- Donovan J Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | | | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Salvador Manzo-Avalos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Asdrubal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Mexico
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico.
| |
Collapse
|
2
|
Li J, Feng Y, Li Y, He P, Zhou Q, Tian Y, Yao R, Yao Y. Ferritinophagy: A novel insight into the double-edged sword in ferritinophagy-ferroptosis axis and human diseases. Cell Prolif 2024; 57:e13621. [PMID: 38389491 PMCID: PMC11216947 DOI: 10.1111/cpr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Nuclear receptor coactive 4 (NCOA4), which functions as a selective cargo receptor, is a critical regulator of the particularly autophagic degradation of ferritin, a process known as ferritinophagy. Mechanistically, NCOA4-mediated ferritinophagy performs an increasingly vital role in the maintenance of intracellular iron homeostasis by promoting ferritin transport and iron release as needed. Ferritinophagy is not only involved in iron-dependent responses but also in the pathogenesis and progression of various human diseases, including metabolism-related, neurodegenerative, cardiovascular and infectious diseases. Therefore, ferritinophagy is of great importance in maintaining cell viability and function and represents a potential therapeutic target. Recent studies indicated that ferritinophagy regulates the signalling pathway associated with ferroptosis, a newly discovered type of cell death characterised by iron-dependent lipid peroxidation. Although accumulating evidence clearly demonstrates the importance of the interplay between dysfunction in iron metabolism and ferroptosis, a deeper understanding of the double-edged sword effect of ferritinophagy in ferroptosis has remained elusive. Details of the mechanisms underlying the ferritinophagy-ferroptosis axis in regulating relevant human diseases remain to be elucidated. In this review, we discuss the latest research findings regarding the mechanisms that regulate the biological function of NCOA4-mediated ferritinophagy and its contribution to the pathophysiology of ferroptosis. The important role of the ferritinophagy-ferroptosis axis in human diseases will be discussed in detail, highlighting the great potential of targeting ferritinophagy in the treatment of diseases.
Collapse
Affiliation(s)
- Jing‐Yan Li
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yan‐Hua Feng
- Department of OrthopedicsHebei Provincial Chidren's HospitalShijiazhuangChina
| | - Yu‐Xuan Li
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Peng‐Yi He
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Qi‐Yuan Zhou
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ying‐Ping Tian
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ren‐Qi Yao
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| | - Yong‐Ming Yao
- Department of EmergencyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Translational Medicine Research CenterMedical Innovation Research Division and Fourth Medical Center of the Chinese PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Wei X, Liu M, Zheng Z, Yu S, Huang L, Ma J, Gao Y, Peng Y, Chen L, Tan R, She Z, Yang L. Defective NCOA4-dependent ferroptosis in senescent fibroblasts retards diabetic wound healing. Cell Death Discov 2023; 9:138. [PMID: 37117222 PMCID: PMC10147701 DOI: 10.1038/s41420-023-01437-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Cellular senescence describes a state of permanent proliferative arrest in cells. Studies have demonstrated that diabetes promotes the pathological accumulation of senescent cells, which in turn impairs cell movement and proliferation. Historically, senescence has been perceived to be a detrimental consequence of chronic wound healing. However, the underlying mechanism that causes senescent cells to remain in diabetic wounds is yet to be elucidated. Ferroptosis and ferritinophagy observed in diabetes are due to iron metabolism disorders, which are directly associated with the initiation and progression of diabetes. Herein, we reveal that senescent fibroblasts in diabetic wounds are resistant to ferroptosis and that impaired ferritinophagy may be a contributing cause. Further, the expression of NCOA4, a key factor that influences ferritinophagy, is decreased in both diabetic wound tissue and high glucose-induced senescent fibroblasts. Moreover, NCOA4 overexpression could render senescent fibroblasts more vulnerable to ferroptosis. A faster wound healing process was also linked to the induction of ferroptosis. Thus, resistance to ferroptosis impedes the removal of senescent fibroblasts; promoting ferritinophagy could reverse this process, which may have significant implications for the management of diabetic wounds.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Shenzhen Engineering Research Center of Implantable Medical Polymer, Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen, China
| | - Zhending She
- Shenzhen Lando Biomaterials Co., Ltd., Shenzhen Engineering Research Center of Implantable Medical Polymer, Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Holbein BE, Lehmann C. Dysregulated Iron Homeostasis as Common Disease Etiology and Promising Therapeutic Target. Antioxidants (Basel) 2023; 12:antiox12030671. [PMID: 36978919 PMCID: PMC10045916 DOI: 10.3390/antiox12030671] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Iron is irreplaceably required for animal and human cells as it provides the activity center for a wide variety of essential enzymes needed for energy production, nucleic acid synthesis, carbon metabolism and cellular defense. However, iron is toxic when present in excess and its uptake and storage must, therefore, be tightly regulated to avoid damage. A growing body of evidence indicates that iron dysregulation leading to excess quantities of free reactive iron is responsible for a wide range of otherwise discrete diseases. Iron excess can promote proliferative diseases such as infections and cancer by supplying iron to pathogens or cancer cells. Toxicity from reactive iron plays roles in the pathogenesis of various metabolic, neurological and inflammatory diseases. Interestingly, a common underlying aspect of these conditions is availability of excess reactive iron. This underpinning aspect provides a potential new therapeutic avenue. Existing hematologically used iron chelators to take up excess iron have shown serious limitations for use but new purpose-designed chelators in development show promise for suppressing microbial pathogen and cancer cell growth, and also for relieving iron-induced toxicity in neurological and other diseases. Hepcidin and hepcidin agonists are also showing promise for relieving iron dysregulation. Harnessing iron-driven reactive oxygen species (ROS) generation with ferroptosis has shown promise for selective destruction of cancer cells. We review biological iron requirements, iron regulation and the nature of iron dysregulation in various diseases. Current results pertaining to potential new therapies are also reviewed.
Collapse
Affiliation(s)
- Bruce E. Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence:
| |
Collapse
|
5
|
Qin Y, Huang Y, Li Y, Qin L, Wei Q, Chen X, Yang C, Zhang M. Association between systemic iron status and β-cell function and insulin sensitivity in patients with newly diagnosed type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1143919. [PMID: 37077360 PMCID: PMC10107407 DOI: 10.3389/fendo.2023.1143919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Abnormal iron metabolism is related to the risk of diabetes, but the underlying mechanism of this association remains uncertain. This study was conducted to evaluate the contributions of systemic iron status to β-cell function and insulin sensitivity of patients with newly diagnosed T2DM. METHODS A total of 162 patients with newly diagnosed T2DM and 162 healthy controls were enrolled in the study. Basic characteristics, biochemical indicators, and iron metabolism biomarkers, including serum iron (SI), ferritin (SF), transferrin (Trf), and transferrin saturation (TS), were collected. All patients underwent a 75 g oral glucose tolerance test. A series of parameters for assessing β-cell function and insulin sensitivity were calculated. The multivariate stepwise linear regression model was used to investigate the contributions of iron metabolism to β-cell function and insulin sensitivity. RESULTS Compared with healthy controls, patients with newly diagnosed T2DM had significantly higher levels of SF. Among the diabetic patients, the SI and TS levels were higher, and the percentage of Trf levels below normal values was lower in men than in women. In all diabetic patients, SF was the independent risk factor associated with impaired β-cell function. Further stratification analysis showed that Trf was an independent protective factor for β-cell function in male patients, while SF was an independent risk factor for impaired β-cell function in female patients. However, systemic iron status did not affect insulin sensitivity. CONCLUSION Elevated SF levels and decreased Trf levels had a profound effect on impaired β-cell function in Chinese patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Yao Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiting Huang
- Department of Clinical Nutrition, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxiao Li
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Qin
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianying Wei
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanhui Yang
- Department of Endocrinology, the First People’s Hospital of Lianyungang, Lianyungang, China
| | - Mei Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Mei Zhang,
| |
Collapse
|
6
|
Packer M. Alleviation of functional iron deficiency by SGLT2 inhibition in patients with type 2 diabetes. Diabetes Obes Metab 2022; 25:1143-1146. [PMID: 36583283 DOI: 10.1111/dom.14963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
7
|
He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab 2022; 60:101470. [PMID: 35304332 PMCID: PMC8980341 DOI: 10.1016/j.molmet.2022.101470] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND With long-term metabolic malfunction, diabetes can cause serious damage to whole-body tissue and organs, resulting in a variety of complications. Therefore, it is particularly important to further explore the pathogenesis of diabetes complications and develop drugs for prevention and treatment. In recent years, different from apoptosis and necrosis, ferroptosis has been recognized as a new regulatory mode of cell death and involves the regulation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy. Evidence shows that ferroptosis and ferritinophagy play a significant role in the occurrence and development of diabetes complications. SCOPE OF REVIEW we systematically review the current understanding of ferroptosis and ferritinophagy, focusing on their potential mechanisms, connection, and regulation, discuss their involvement in diabetes complications, and consider emerging therapeutic opportunities and the associated challenges with future prospects. MAJOR CONCLUSIONS In summary, ferroptosis and ferritinophagy are worthy targets for the treatment of diabetes complications, but their complete molecular mechanism and pathophysiological process still require further study.
Collapse
Affiliation(s)
- Jiahui He
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK; School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Xinxi FuChen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 30006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|