1
|
Wongsirisuwan S, Intarak N, Prommanee S, Sa-Ard-Iam N, Namano S, Nantanapiboon D, Porntaveetus T. Influence of light-polymerizing units and zirconia on the physical, chemical and biological properties of self-adhesive resin cements. BMC Oral Health 2024; 24:1172. [PMID: 39363275 PMCID: PMC11451154 DOI: 10.1186/s12903-024-04941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Self-adhesive resin cements (SARCs) are widely used for fixed prostheses, but incomplete cleaning near the gingival margin can cause inflammation. However, the factors influencing cement properties and the biological response of gingival fibroblasts to cement eluates are not well understood. This study examines the impact of two light-polymerizing units (LPUs) on the physical and chemical properties of two SARCs under simulated clinical conditions, as well as the subsequent response of human gingival fibroblasts (hGFs) to these eluates. METHODS Dental cement discs of SARCs were polymerized using Kerr DemiPlus and 3 M Elipar DeepCure-S LED LPUs with or without a 2-mm thick zirconia screen. Physical properties (microhardness, surface roughness, residual monomers) were evaluated. hGFs' cell viability, wound healing potency, and gene expression were assessed. RESULTS Both Maxcem and RelyX exhibited reduced microhardness and increased surface roughness when polymerized through zirconia or with DemiPlus LPU. Higher residual monomers (HEMA and GDMA in Maxcem; TEGDMA in RelyX) concentration was observed with DemiPlus and zirconia polymerization. Maxcem polymerized with DemiPlus exhibited lower cell viability, impaired healing, and altered gene expression in hGFs compared to those polymerized with Elipar LPU. Gene expression changes included downregulated NRF2 and HO-1 and upregulated CCR-3. CONCLUSIONS Light-polymerizing Maxcem through zirconia with DemiPlus LPU compromised SARCs' properties, leading to higher residual monomers and negatively impacting hGFs' viability, healing, and gene expression. Careful material selection and polymerization techniques are crucial to minimize adverse effects on surrounding tissues. CLINICAL SIGNIFICANCE Clinicians should exercise caution when using LPUs and SARCs, especially when polymerizing through zirconia. This will help optimize the physical and chemical properties of SARCs and minimize potential adverse effects on the surrounding gingival soft tissues.
Collapse
Affiliation(s)
- Siriwong Wongsirisuwan
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasiprapa Prommanee
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sunporn Namano
- Implant and Esthetic Dentistry Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Dusit Nantanapiboon
- Department of Operative Dentistry, Dental Material Research and Development Center, Faculty of Dentistry, University, Bangkok, Thailand
- Clinic of General, Special Care, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Geriatric Dentistry and Special Patients Care International Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Kim RJY, Kim DH, Seo DG. Post-polymerization of three-dimensional printing resin using a dental light curing unit. J Dent Sci 2024; 19:945-951. [PMID: 38618100 PMCID: PMC11010625 DOI: 10.1016/j.jds.2023.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 04/16/2024] Open
Abstract
Background/Purpose In vat photopolymerization, post-polymerization of the three-dimensional (3D) printing resin is necessary to ensure the optimum physical properties of the printed objects. This study aimed to evaluate the potential use of a handheld polywave light-emitting diode (LED) dental light-curing unit (LCU) for post-polymerizing 3D printed resins by measuring the microhardness and biaxial flexural strength of the post-polymerized resin. Material and methods 3D printed 1- and 2-mm-thick disks were irradiated with a dental LCU at 3200 mW/cm2. Post-polymerization was repeated either on one side from the top surface: two cycles (T2), four cycles (T4), and eight cycles (T8), or on both sides from the top and bottom surfaces: one cycle (T1B1), two cycles (T2B2), and four cycles (T4B4) for each side. The microhardness and biaxial strength of the disks were compared to those post-polymerized by a conventional desktop polymerizing unit (PC) and those without post-polymerization (NC). Results Microhardness of the disks varied between the top and bottom surfaces of the 1-mm and 2-mm-thick disks, depending on the post-polymerization methods. T8 and T4B4 produced comparable microhardness on the top surface to PC for both thicknesses. In contrast, PC, T2B2, and T4B4 exhibited the highest microhardness on the bottom surface. Except for NC, the 1-mm-thick disks had a higher biaxial flexural strength than the 2-mm-thick disks. T4B4 resulted in the highest biaxial flexural strength for both thicknesses, which was comparable to that of the desktop polymerizing unit. Conclusion The microhardness and biaxial flexural strengths of the post-polymerized 3D-printed disks increase with polymerization time. With sufficient polymerization from both sides, the polywave LCU has the potential to be a viable alternative to desktop polymerization units.
Collapse
Affiliation(s)
- Ryan Jin Young Kim
- Department of Dental Science, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Dong-Hwan Kim
- Seoul Gospel Dental Clinic, Seoul, Republic of Korea
| | - Deog-Gyu Seo
- Department of Conservative Dentistry, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
3
|
David-Pérez M, Ramírez-Suárez JP, Latorre-Correa F, Agudelo-Suárez AA. Degree of conversion of resin-cements (light-cured/dual-cured) under different thicknesses of vitreous ceramics: systematic review. J Prosthodont Res 2022; 66:385-394. [PMID: 34853236 DOI: 10.2186/jpr.jpr_d_20_00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE This systematic review synthesized and analyzed the scientific evidence on the degree of conversion (DC) obtained by Fourier-transform infrared spectroscopy (FTIR) of light-cured and dual-cured resinous cements, photopolymerized under different thicknesses of vitreous ceramics. STUDY SELECTION The study protocol of this systematic review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42017069319). A comprehensive search (PubMed/MEDLINE, Scopus, EMBASE, and LILACS) was performed for papers including an in vitro design and indexed from January 2007 to December 2020 according to the study purposes. A quality appraisal (specific instrument) and descriptive analysis of the articles that met the inclusion criteria were conducted. RESULTS Nine included studies were analyzed. Two of them used feldspathic ceramics, six used lithium disilicate, and one used both (comparing different types and opacities of ceramics). Three studies found a higher DC in dual cements, while one did not find any significant differences, and five studies found a higher DC in light-cured resin cements. Light-cured cements showed a better DC in relation to dual-cured cements in vitreous ceramic restorations with thicknesses up to 2 mm. CONCLUSION According to the findings, the use of good photoactivation is the most relevant variable to achieve an adequate DC in light-cured and dual-cured resin cements. The use of vitreous ceramic restorations with a thickness of less than 2 mm (light-curing cements) shows a better DC. Standardized in vitro studies are required to generate accurate scientific evidence.
Collapse
|
4
|
Intrapulpal temperature changes during the cementation of ceramic veneers. Sci Rep 2022; 12:12919. [PMID: 35902776 PMCID: PMC9334278 DOI: 10.1038/s41598-022-17285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Adhesive cementation of ceramic veneers may increase pulpal temperature (PT) due to the combined effect of heat generated by the curing unit and the exothermic reaction of the luting agent (LA). PT increase may induce pulpal damage. The aim was to determine the PT rise during the luting of ceramic veneers (CV) of different thicknesses with light- or dual-curing (LC, DC) adhesive cements as well as pre-heated restorative resin-based composites (PH-RBC). For this a thermocouple sensor was positioned in the pulp chamber of a prepared maxillary central incisor. LC, DC adhesive cements and PH-RBCs heated to 55 °C were used for the luting of CVs of 0.3, 0.5, 0.7, and 1.0 mm thicknesses. The exothermic reaction of LAs added significantly to the thermal effect of the curing unit. PT change ranged between 8.12 and 14.4 °C with the investigated combinations of LAs and ceramic thicknesses (p ≤ 0.01). The increase was inversely proportional to the increasing CV thicknesses. The highest rise (p ≤ 0.01) was seen with the polymerization of PH-RBCs. Temperature changes were predominantly influenced by the composition of the LA, which was followed by CV thickness.
Collapse
|
5
|
Bayrak GD, Yaman-Dosdogru E, Selvi-Kuvvetli S. The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials. Polymers (Basel) 2022; 14:1885. [PMID: 35567054 PMCID: PMC9104037 DOI: 10.3390/polym14091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/05/2022] Open
Abstract
This study aimed to evaluate the effect of two different light-curing units and curing times on the surface microhardness (SMH), compressive strength (CS), and volumetric shrinkage (VS) of four restorative materials (FiltekTM Z250, FiltekTM Bulk Fill Posterior, Beautifil® Bulk Restorative, ACTIVATM BioACTIVE). For all tests, each material was divided into two groups depending on the curing unit (Woodpecker LED-E and CarboLED), and each curing unit group was further divided into two subgroups according to curing time (10 s and 20 s). SMH was evaluated using a Vickers hardness tester, CS was tested using a universal testing machine, and VS was measured using video imaging. In all the restorative materials cured with Woodpecker LED-E, the 20 s subgroup demonstrated significantly higher SMH values than the 10 s subgroup. In both light-curing time subgroups, the CarboLED group showed significantly higher CS values than the Woodpecker LED-E group for all restorative materials except FiltekTM Bulk Fill Posterior cured for 20 s. ACTIVATM BioACTIVE showed significantly greater volumetric change than the other restorative materials. A higher curing light intensity and longer curing time had a positive effect on the SMH and CS of the restorative materials tested in this study. On the other hand, curing unit and time did not show a significant effect on the VS values of restorative materials.
Collapse
Affiliation(s)
- Gokcen Deniz Bayrak
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Yeditepe, Bagdat Cd. No. 238, Istanbul 34728, Turkey; (E.Y.-D.); (S.S.-K.)
| | | | | |
Collapse
|
6
|
Aldryhim H, El-Mowafy O, McDermott P, Prakki A. Hardness of Resin Cements Polymerized through Glass-Ceramic Veneers. Dent J (Basel) 2021; 9:dj9080092. [PMID: 34436004 PMCID: PMC8394743 DOI: 10.3390/dj9080092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
(1) Background: The aim of this study is to evaluate the hardness of resin cements polymerized through ceramic disks under different process factors (ceramic type and thickness, light-polymerization units and polymerization time); (2) Method: Three types of ceramic blocks were used (IPS e.max CAD; Celtra Duo; VITABLOCS). Ceramic disks measuring 0.5 mm, 1.0 mm and 1.5 mm were cut from commercial blocks. Two resin cements (Rely X Veneer and Variolink Esthetic) were polymerized through the ceramic specimens using distinct light-polymerization units (Deep-cure; Blue-phase) and time intervals (10 and 20 s). Hardness of cement specimens was measured using microhardness tester with a Knoop indenter. Data were statistically analyzed using factorial ANOVA (α = 5%); (3) Results: Mean microhardness of Rely X Veneer cement was significantly higher than that of Variolink Esthetic. Deep-cure resulted in higher mean microhardness values compared to Blue-phase at 0.5- and 1-mm specimen thicknesses. Moreover, a direct correlation was found between polymerization time and hardness of resin cement; (4) Conclusions: Surface hardness was affected by resin cement type and ceramic thickness, and not affected by ceramic types, within evaluated conditions. Increasing light-polymerization time significantly increased the hardness of the cement.
Collapse
Affiliation(s)
- Hanan Aldryhim
- Faculty of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- Correspondence:
| | - Omar El-Mowafy
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (O.E.-M.); (P.M.); (A.P.)
| | - Peter McDermott
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (O.E.-M.); (P.M.); (A.P.)
| | - Anuradha Prakki
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (O.E.-M.); (P.M.); (A.P.)
| |
Collapse
|
7
|
Bragança GF, Vianna AS, Neves FD, Price RB, Soares CJ. Effect of exposure time and moving the curing light on the degree of conversion and Knoop microhardness of light-cured resin cements. Dent Mater 2020; 36:e340-e351. [PMID: 32950244 DOI: 10.1016/j.dental.2020.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the effect of exposure time and moving the light-curing unit (LCU) on the degree of conversion (DC) and Knoop microhardness (KH) of two resin cements that were light-cured through ceramic. METHODS Two resin cements: AllCem Veneer APS (FGM) and Variolink Esthetic LC (Ivoclar Vivadent) were placed into a 0.3 mm thick matrix in 6 locations representing the canine to canine. The resins were covered with 0.5 mm thick lithium disilicate glass-ceramic (IPS e.max CAD, Ivoclar Vivadent). A motorized device moved the LCUs over the ceramic when the LCU was on. Two single-peak LCUs: Elipar DeepCure-L (3M Oral Care) and Emitter C (Schuster), and one multi-peak: Bluephase G2 (Ivoclar Vivadent) were used with 3 different exposure protocols: a localized exposure centered over each tooth for 10 or 40 s; moving the tip across the 6 teeth for a total exposure time of 10 or 40 s; and moving the tip across the 6 teeth resins for a total exposure time of 60 or 240 s. After 24 h, the DC and KH were measured on the top surfaces and the data was analyzed using three-way ANOVA and Tukey's tests (α = 0.05). RESULTS Interposition of 0.5 mm of ceramic reduced the irradiance received by the resin by approximately 50%. The 40 s localized exposure over each tooth always produced significantly higher DC and KH values. Moving the LCUs with a total exposure time of 10 s resulted in the lowest DC and KH. There was no beneficial effect on the DC or KH when the multi-peak (violet-blue) LCU (Elipar DeepCure-L or Bluephase G2), but the lower light output from a small tip LCU reduced the DC and KH values (Emitter C). SIGNIFICANCE Moving the LCUs when photo-curing light-cured resin cements is not recommended. This study showed that a single-peak LCU could activate a resin cement that uses Ivocerin™ as well as the multi-peak LCU.
Collapse
Affiliation(s)
- Gabriel Felipe Bragança
- Biomechanical, Biomaterials and Cell Biology Research Center, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Arthur Silva Vianna
- School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Flávio Domingues Neves
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Richard Bengt Price
- Department of Occlusion and Prosthodontic, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Carlos José Soares
- Biomechanical, Biomaterials and Cell Biology Research Center, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Naliani S, Elias S, Tjandrawinata R. Effect of light intensity, light-curing unit exposure time, and porcelain thickness of ips e.max press and vintage LD press on the hardness of resin cement. SCIENTIFIC DENTAL JOURNAL 2020. [DOI: 10.4103/sdj.sdj_45_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Caldeira EM, Telles V, Mattos CT, Nojima MDCG. Surface morphologic evaluation of orthodontic bonding systems under conditions of cariogenic challenge. Braz Oral Res 2019; 33:e029. [PMID: 31038566 DOI: 10.1590/1807-3107bor-2019.vol33.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/08/2019] [Indexed: 11/22/2022] Open
Abstract
Orthodontic bonding systems are submitted to demineralization and remineralization dynamics that might compromise their surface smoothness, and favor biofilm aggregation and caries development. The aim of the present study was to evaluate the effects of a cariogenic challenge model (in vitro pH-cycling model) on the surface roughness and topography of 3 bonding materials: Transbond™ XT (XT), Transbond™ Plus Color Change (PLUS) and Fuji Ortho™ LC (FUJI), by means of Atomic Force Microscopy (AFM). Six specimens with standardized dimensions and surface smoothness were fabricated per group, and the materials were manipulated in accordance with the manufacturers' instructions. No polishing was necessary. AFM tests were performed before and after pH-cycling, taking 3 readouts per specimen. The roughness results (Ra) were obtained at nanometric levels (nm) and surface records were acquired in two- and three-dimensional images of height and lock-in phase of the material components. The surfaces of all groups analyzed in the study were morphologically altered, presenting images suggestive of matrix degradation and loss of matrix-load integrity. FUJI presented the greatest increase in surface roughness, followed by XT and PLUS, respectively (p≤0.001). Nevertheless, the roughness values found did not present sufficient degradation to harbor bacteria. The surface roughness of all tested materials was increased by pH-cycling. The use of materials capable of resisting degradation in the oral environment is recommended, in order to conserve their integrity and of the surrounding tissues.
Collapse
Affiliation(s)
- Erika Machado Caldeira
- Universidade Federal Fluminense - UFF, School of Dentistry, Department of Orthodontics, Niterói, RJ, Brazil
| | - Vicente Telles
- University of Pittsburgh, School of Dental Medicine, Department of Oral Biology, Pittsburgh, PA, USA
| | - Claudia Trindade Mattos
- Universidade Federal Fluminense - UFF, School of Dentistry, Department of Orthodontics, Niterói, RJ, Brazil
| | - Matilde da Cunha Gonçalves Nojima
- Universidade Federal do Rio de Janeiro - UFRJ, School of Dentistry, Department of Orthodontics and Pediatric Dentistry, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Wang S, Huang Q, Liu X, Li Z, Yang H, Lu Z. Rapid Antibiofilm Effect of Ag/ZnO Nanocomposites Assisted by Dental LED Curing Light against Facultative Anaerobic Oral Pathogen Streptococcus mutans. ACS Biomater Sci Eng 2019; 5:2030-2040. [PMID: 33405515 DOI: 10.1021/acsbiomaterials.9b00118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The integration of nanomaterials with clinical therapeutic instruments is a promising approach to improve the effects of nanomaterials. We reported an efficient synergistic antibacterial strategy formed through the combination of Ag/ZnO nanocomposites with a light-emitting diode (LED) curing light, which is a commonly used small instrument in dental clinics. The as-designed integration depicted a significantly enhanced bactericidal effect on facultative anaerobic oral pathogen Streptococcus mutans (S. mutans) both in planktonic and biofilm phases over a very short irradiation time (≤5 min). Further study showed that the combination of LED and Ag/ZnO nanocomposites induced more ·OH and ·O2- generation, which is responsible for the enhanced antibacterial activity. Moreover, this combination could destroy S. mutans biofilm by killing the bacteria embedded within biofilm, inhibiting exopolysaccharide production and down-regulating the biofilm-related gene expression. Therefore, it is proposed that this combination could be applied in dental clinics to realize dental caries prevention and dental restoration simultaneously.
Collapse
Affiliation(s)
- Shilei Wang
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, No. 206, Guanggu first road, Wuhan 430073, PR China
| | - Qiaomu Huang
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, No. 206, Guanggu first road, Wuhan 430073, PR China
| | - Xiangyu Liu
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, No. 206, Guanggu first road, Wuhan 430073, PR China
| | - Zhao Li
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, No. 206, Guanggu first road, Wuhan 430073, PR China
| | - Hao Yang
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, No. 206, Guanggu first road, Wuhan 430073, PR China
| | - Zhong Lu
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, No. 206, Guanggu first road, Wuhan 430073, PR China
| |
Collapse
|