1
|
Bakri HH, Syed Abdul Rahman SN, Dol Bakri ZS, Munadziroh E, Wan Harun WHA. Antimicrobial activity of Ruta angustifolia L. Pers against periodontal pathogen: Porphyromonas gingivalis. PeerJ 2024; 12:e18751. [PMID: 39713137 PMCID: PMC11662893 DOI: 10.7717/peerj.18751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Background Porphyromonas gingivalis is widely recognised as a periodontal pathogen. In recent years, there has been growing interest in the use of medicinal plant extracts as alternative treatments for periodontitis to combat the emergence of antibiotic-resistant bacteria. Ruta angustifolia L. Pers has been traditionally used to treat various ailments, including oral bacterial infections. However, the antimicrobial potential of R. angustifolia extracts against the periodontal pathogen P. gingivalis remains unexplored. Hence, the aim of this study was to investigate the antimicrobial activity of R. angustifolia extracts against P. gingivalis. Methods The antimicrobial activity of R. angustifolia extracts (crude methanol, hexane and chloroform fractionated extracts) against P. gingivalis was evaluated using the well diffusion method. Additionally, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. Biofilm biomass assessment and live/dead cell viability assays were performed to analyse the effect of R. angustifolia extracts. Ultrastructural morphological changes in P. gingivalis cells were determined using field emission scanning electron microscopy (FE-SEM). Results It was found that P. gingivalis was susceptible to R. angustifolia extracts, with the chloroform fractionated extract exhibiting the highest inhibition zones. The MIC and MBC of chloroform fractionated extract were determined to be 6.25 mg/mL which substantially reduced P. gingivalis biofilm biomass. Live/dead cell viability assays showed the highest percentage of dead P. gingivalis cells after 48 h of incubation. FE-SEM confirmed that the chloroform fractionated extract effectively damaged the bacterial cell wall and altered the ultrastructural morphology of P. gingivalis. Conclusion The results indicated that extracts of R. angustifolia has the potential to be used as an alternative treatment in addition to conventional periodontal therapies.
Collapse
Affiliation(s)
- Husna Hazirah Bakri
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Zarith Safinaz Dol Bakri
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Elly Munadziroh
- Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Wan Himratul Aznita Wan Harun
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
| |
Collapse
|
2
|
Shawki MM, El-Shall HS, Moustafa ME, Atay KYS, Elsheredy AG, Eltarahony MM. Revealing detrimental effects of various DC electrical energy conditions on different multidrug resistant bacteria: a comprehensive study. Sci Rep 2024; 14:17046. [PMID: 39048587 PMCID: PMC11269707 DOI: 10.1038/s41598-024-66063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The arbitrary discharge of contaminated wastes, especially that encompass multidrug resistant microbes (MDR), would broaden the circle of epidemic diseases such as COVID-19, which in turn deteriorate definitely the whole socioeconomics. Therefore, the employment of electrical stimulation techniques such as direct current (DC) with low energy considers being effective tool to impede spontaneous changes in microbial genetic makeup, which increases the prevalence of MDR phenomenon. Herein, the influence of different electric energies generated by DC electric field, volts and time on MDR-bacteria that are categorized among the highly ranked nosocomial pathogens, was scrutinized. Wherein, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis were examined as paradigms of Gram-negative and Gram-positive pathogens. The results declared the significant superior antagonizing potency of electric energy in a dose-dependent modality rather than the applied volts or exposure time. Notably, the exposure of bacterial cultures to140 J inhibited the bacterial count by > 78% and the range of 47-73% for Gram-negative and Gram-positive, respectively. While the suppression in their metabolic activity assessed by > 75% and 41-68%, respectively; reflecting the capability of electrical energy to induce viable but non-culturable (VBNC) state. Similarly, the results of total protein, extracellular protein content and lactate dehydrogenase activity emphasized the cell wall deterioration and losing of cell membrane integrity. Additionally, the elevating in ROS upon DC-exposure participated in DNA fragmentation and plasmid decomposability by the range of 33-60%. Further, SEM micrographs depicted drastic morphological deformations after electrical treatment. Strikingly, DC-treatment impaired antibiotic resistance of the examined strains against several antibiotics by > 64.2%. Generally, our comparative detailed study revealed deleterious potentiality of different DC-protocols in defeating microbial pollution, which could be invested as efficient disinfectant alternative in various sectors such as milk sterilization and wastewater purification.
Collapse
Affiliation(s)
- Mamdouh M Shawki
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Hadeel S El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Maisa E Moustafa
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kamal Y S Atay
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amel G Elsheredy
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Marwa M Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
| |
Collapse
|
3
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Jiménez-García L, Lara-Martínez R, Pérez-Torres A, González del Pliego M, Aguirre-Benítez EL, Fernández-Presas AM. Cystatin C: immunoregulation role in macrophages infected with Porphyromonas gingivalis. PeerJ 2024; 12:e17252. [PMID: 38708345 PMCID: PMC11067906 DOI: 10.7717/peerj.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Background Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Jiménez-García
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Reyna Lara-Martínez
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita González del Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Huixquilucan, Universidad Anáhuac, Estado de México, México
| |
Collapse
|
4
|
Lee J, Kim YW. Bioelectric device for effective biofilm inflammation management of dental implants. Sci Rep 2023; 13:21372. [PMID: 38049472 PMCID: PMC10695962 DOI: 10.1038/s41598-023-48205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Dental implant inflammation is primarily caused by oral biofilms, which form within 8 h, particularly at 37 °C, thereby requiring diligent cleaning. Considering the complex management of dental implants, a novel technology based on the bioelectric effect (BE) to combat inflammation has emerged. A BE-integrated toothbrush was developed and clinically tested on patients with dental implants (N = 36). Our findings revealed a significant average plaque index reduction of 67% with BE technology compared with that at baseline (P < 0.05), whereas non-BE did not yield statistical significance even after 4 weeks of use (P > 0.05). The bleeding index demonstrated a 59% average reduction in all surfaces with BE technology (P < 0.05), whereas the non-BE group exhibited no significant change. Substantial reductions in total plaque and bleeding indices suggest that using BE toothbrushes can help effectively remove oral biofilms and treat bleeding symptoms.
Collapse
Affiliation(s)
- Jihyun Lee
- Department of Periodontology, Ulsan University Hospital, College of Medicine, University of Ulsan, 877 Bangeojinsunhwando-ro, Dong-gu, Ulsan, 44033, Republic of Korea.
| | - Young Wook Kim
- ProxiHealthcare Advanced Institute for Science and Technology (PAIST), Seoul, Republic of Korea
| |
Collapse
|
5
|
Roldan L, Montoya C, Solanki V, Cai KQ, Yang M, Correa S, Orrego S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43441-43454. [PMID: 37672788 DOI: 10.1021/acsami.3c08336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory condition characterized by the progressive destruction of periodontal tissues. The successful nonsurgical treatment of periodontitis requires multifunctional technologies offering antibacterial therapies and promotion of bone regeneration simultaneously. For the first time, in this study, an injectable piezoelectric hydrogel (PiezoGEL) was developed after combining gelatin methacryloyl (GelMA) with biocompatible piezoelectric fillers of barium titanate (BTO) that produce electrical charges when stimulated by biomechanical vibrations (e.g., mastication, movements). We harnessed the benefits of hydrogels (injectable, light curable, conforms to pocket spaces, biocompatible) with the bioactive effects of piezoelectric charges. A thorough biomaterial characterization confirmed piezoelectric fillers' successful integration with the hydrogel, photopolymerizability, injectability for clinical use, and electrical charge generation to enable bioactive effects (antibacterial and bone tissue regeneration). PiezoGEL showed significant reductions in pathogenic biofilm biomass (∼41%), metabolic activity (∼75%), and the number of viable cells (∼2-3 log) compared to hydrogels without BTO fillers in vitro. Molecular analysis related the antibacterial effects to be associated with reduced cell adhesion (downregulation of porP and fimA) and increased oxidative stress (upregulation of oxyR) genes. Moreover, PiezoGEL significantly enhanced bone marrow stem cell (BMSC) viability and osteogenic differentiation by upregulating RUNX2, COL1A1, and ALP. In vivo, PiezoGEL effectively reduced periodontal inflammation and increased bone tissue regeneration compared to control groups in a mice model. Findings from this study suggest PiezoGEL to be a promising and novel therapeutic candidate for the treatment of periodontal disease nonsurgically.
Collapse
Affiliation(s)
- Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Varun Solanki
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santiago Correa
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
6
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Tang W, Du M, Zhang S, Jiang H. Sitagliptin attenuates Porphyromonas gingivalis virulence and inflammatory response in macrophage on titanium. Arch Oral Biol 2023; 149:105659. [PMID: 36871330 DOI: 10.1016/j.archoralbio.2023.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND In peri-implantitis, Porphyromonas gingivalis and macrophage play important roles. The aim of this study was to detect the attenuating effect of an anti-diabetic drug sitagliptin on Porphyromonas gingivalis virulence and inflammatory response in macrophage on titanium discs. MATERIALS AND METHODS Porphyromonas gingivalis and macrophage were cultured on titanium discs. Antibacterial and antibiofilm activities of sitagliptin were assessed and the morphology of Porphyromonas gingivalis was observed by SEM. Bacterial early adhesion, aggregation, hemolysis and Porphyromonas gingivalis virulence factors mRNA expression were assessed to preliminarily investigate the mechanisms of action. Flow cytometry assay, qRT-PCR assay and ELISA were used to assess the anti-inflammatory effect of sitagliptin on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophage. RESULTS The present study demonstrated the inhibiting effect of sitagliptin on the growth, biofilm and virulence factors of Porphyromonas gingivalis and the protective effect on the Porphyromonas gingivalis lipopolysaccharide-induced polarization in macrophage. And we also confirmed the anti-inflammatory effect of sitagliptin on the secretion of inflammation-related factors in macrophage. CONCLUSIONS Sitagliptin possesses the attenuating effect on Porphyromonas gingivalis virulence and inflammatory response in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophage on titanium.
Collapse
Affiliation(s)
- Weilong Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuang Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Zou P, Wang Y, Cao P, Li P, Liu J, Luan Q. Weak direct current exerts synergistic effect with antibiotics and reduces the antibiotic resistance: An in vitro subgingival plaque biofilm model. J Periodontal Res 2023; 58:143-154. [PMID: 36446019 DOI: 10.1111/jre.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Weak direct current (DC) exerts killing effect and synergistic killing effect with antibiotics in some specific bacteria biofilms. However, the potential of weak DC alone or combined with periodontal antibiotics in controlling periodontal pathogens and plaque biofilms remains unclear. The objective of this study was to investigate whether weak DC could exert the anti-biofilm effect or enhance the killing effect of metronidazole (MTZ) and/or amoxicillin-clavulanate potassium (AMC) on subgingival plaque biofilms, by constructing an in vitro subgingival plaque biofilm model. METHODS The pooled subgingival plaque and saliva of patients with periodontitis (n = 10) were collected and cultured anaerobically on hydroxyapatite disks in vitro for 48 h to construct the subgingival plaque biofilm model. Then such models were stimulated with 0 μA DC alone (20 min/12 h), 1000 μA DC alone (20 min/12 h), 16 μg/ml MTZ, 16 μg/ml AMC or their combination, respectively. Through viable bacteria counting, metabolic activity assay, quantitative real-time PCR absolute quantification and 16S rDNA sequencing analysis, the anti-biofilm effect of 1000 μA DC and enhanced killing effects of 1000 μA DC combined with antibiotics (MTZ, AMC or MTZ+AMC) were explored. RESULTS The old subgingival plaque model (48 h) had no significant difference in total bacterial loads from subgingival plaque in situ, which achieved a similarity of 80%. The 1000 μA DC plus MTZ or AMC for 12 h showed a stronger synergistic killing effect than the same combination for 20 min. The metabolic activity was reduced to the lowest by DC plus MTZ+AMC, as 37.4% of that in the control group, while average synergistic killing effect reached 1.06 log units and average total bacterial loads decreased to 0.87 log units. Furthermore, the relative abundance of the genera Porphyromonas, Prevotella, Treponema_2, and Tannerella were decreased significantly. CONCLUSION The presence of weak DC (1000 μA) improved the killing effect of antibiotics on subgingival plaque biofilms, which might provide a novel strategy to reduce their antibiotic resistance.
Collapse
Affiliation(s)
- Peihui Zou
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University, Beijing, China
| | - Yanfeng Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University, Beijing, China
| | - Pei Cao
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University, Beijing, China
| | - Peng Li
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University, Beijing, China
| | - Jia Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University, Beijing, China
| |
Collapse
|
9
|
El Mobadder M, Nammour S, Namour M, Namour A, Grzech-Leśniak K. Disinfection Potential of 980 nm Diode Laser and Hydrogen Peroxide (3%) in "Critical Probing Depths" Periodontal Pockets: Retrospective Study. Life (Basel) 2022; 12:life12030370. [PMID: 35330121 PMCID: PMC8953835 DOI: 10.3390/life12030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/23/2022] Open
Abstract
A successful treatment of periodontitis depends largely on the successful elimination of the periodontopathogens during non-surgical and surgical mechanical debridement. In this retrospective study, data collection was conducted from 2017 to 2021. The retrospective study included 128 patients with 128 sites of localized periodontitis with pocket depths > 5 mm. The included data were based on sites that received conventional mechanical debridement followed by different adjunctive approaches. In total, 30 patients did not receive any additional treatment (SRP group), 30 patients received SRP + 980 nm diode laser irradiation only (SRP + laser), 30 patients received SRP + 3% hydrogen peroxide irrigation (SRP + H2O2) only and 30 patients received a combined treatment of 3% hydrogen peroxide and 980 nm diode laser irradiation (SRP + H2O2 + laser). Total bacterial counts (TBC) in the periodontal pocket collected for all participants before treatment, immediately after treatment, 6 weeks after treatment, 12 weeks after treatment and 6 months after treatment were statistically analyzed and compared. When the laser was used, irradiation parameters were 10 μsec/pulse duration, 10 kHz, pick power of 10 W, average power of 1 W, irradiation time of one minute with inward and outward movements, and fiber diameter of 320 μm. The irradiation was repeated 3 times/pocket. When hydrogen peroxide was used, the irrigation was conducted for one minute and repeated 3 times. The maximum reduction in TBC was obtained when SRP was coupled with 3% H2O2 irrigation followed by 980 nm diode laser irradiation. After six months of follow-up, a significant reduction in TBC was obtained for the group of SRP + H2O2 + laser when compared to all the other groups, from 7.27 × 107 before intervention to 3.21 × 107 after six months. All three approaches to SRP showed a significant reduction in TBC immediately after treatment. Values were 3.52 × 107, 4.01 × 106, 9.58 × 106, 1.98 × 106 for SRP alone, SRP + diode, SRP + H2O2 and SRP + H2O2 + diode laser, respectively. At 6 months, we saw no significant difference between SRP + laser and SRP + H2O2 with 4.01 × 107 and 4.32 × 107, respectively. This retrospective study reveals that after SRP, irrigation with 3% hydrogen peroxide and irradiation with a 980 nm diode laser within specific treatment protocol can be used as an additional approach to conventional SRP to increase the disinfection of the periodontal pockets > 5 mm.
Collapse
Affiliation(s)
- Marwan El Mobadder
- Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland;
- Correspondence: or ; Tel.: +961-71-343-767
| | - Samir Nammour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; (S.N.); (M.N.); (A.N.)
| | - Melanie Namour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; (S.N.); (M.N.); (A.N.)
| | - Amaury Namour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium; (S.N.); (M.N.); (A.N.)
| | | |
Collapse
|