1
|
Zhu J, Gong Y, Zheng F, Yin D, Liu Y. Relationships between functional temporomandibular joint space and disc morphology, position, and condylar osseous condition in patients with temporomandibular disorder. Clin Oral Investig 2024; 28:193. [PMID: 38438806 DOI: 10.1007/s00784-024-05579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE To investigate the correlations between joint space and temporomandibular joint (TMJ) components and the compressive states of the disc and condyle subsequent to joint space changes. MATERIALS AND METHODS A total of 240 TMJs were categorized according to disc morphology, disc position, and condylar osseous condition. The two-dimensional (2D) and three-dimensional (3D) measurements were compared. The functional joint space (FJS) and disc areas on closed- and open-mouth images (DA-C and DA-O) were also calculated, and the joint space was measured in five directions. Different groups of TMJ components were compared. A spring model was used to simulate the effect of condylar displacement on the disc and condyle. RESULTS Disc morphology was strongly correlated with its position. The measurements were equivalent between 2D and 3D methods. DA-C and FJS differed significantly between groups. The DA-C to FJS ratio differed between the Class 2 and Class 3 groups and between disc displacement groups with and without reduction. Altered disc morphology and position were correlated with significant changes in joint space in the 60°, 90°, and 120° directions. Despite minor discrepancies among condylar osseous conditions, reduced joint space was correlated with bone destruction at the corresponding site. The spring model stimulation revealed that condylar displacement caused elevated stresses on the disc and condyle. CONCLUSIONS Condylar displacement causes joint space alterations while exerting compressive pressure on both the disc and condyle. CLINICAL RELEVANCE Proper condylar positioning within the fossa is recommended to ensure sufficient articular disc accommodation.
Collapse
Affiliation(s)
- Jinyi Zhu
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yanji Gong
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangjie Zheng
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| | - Deqiang Yin
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China.
| | - Yang Liu
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhao H. Fabrication of novel nanofiber composed of gelatin/alginate with zirconium oxide NPs regulate orthodontic progression of cartilage degeneration on Wnt/β-catenin signaling axis in MC3T3-E1 cells. Regen Ther 2024; 25:308-319. [PMID: 38327718 PMCID: PMC10847951 DOI: 10.1016/j.reth.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Natural macromolecules like alginate and gelatin are employed to create medication delivery systems that are both safe and effective. Zirconium nanoparticles (ZrO2 NPs) have been proposed as a means of enhancing the alginate-gelatin hydrogel's physical and biological properties. This study combines the synthesis of the biopolymers gelatin and alginate nanofibers with nanoparticles of zirconium oxide (GA/NF- ZrO2 NPs). UV, XRD, FTIR, and SEM were used to characterize the synthesized nanofibers. The expression of osteogenic genes was analyzed by western blotting and qualitative real-time polymerase chain reaction (qRT-PCR). Based on our findings, MC3T3-E1 cells are performed for cell viability, apoptosis and reactive oxygen species production by GA/NF- ZrO2 NPs through the Wnt/β-catenin signaling pathway. Cell migration was accelerated at 75 μg/mL concentration after 24 h of damage in a scratch wound healing assay. Proliferation of the MC3T3-E1 cell line was also detected. GA/NF-ZrO2 NPs influenced the osteogenic variation of MC3T3-E1 cells by inducing autophagy. Furthermore, the impact of obstruction on the temporomandibular joint (TMJ) is a subject of ongoing discussion and analysis within the context of animal models. Coordinated GA/NF-ZrO2 NPs on biomaterial nanofibers could be used to introduce physical signals for modifying MC3T3-E1 responds for orthodontic engineering constructs.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Stomatology, Second Hospital of Shanxi Medical University, No.382, Wuyi Rd, Xinghualing District, Taiyuan, Shanxi, 030013, China
| |
Collapse
|
3
|
Capuana E, Marino D, Di Gesù R, La Carrubba V, Brucato V, Tuan RS, Gottardi R. A High-Throughput Mechanical Activator for Cartilage Engineering Enables Rapid Screening of in vitro Response of Tissue Models to Physiological and Supra-Physiological Loads. Cells Tissues Organs 2023; 211:670-688. [PMID: 34261061 PMCID: PMC9843549 DOI: 10.1159/000514985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
Articular cartilage is crucially influenced by loading during development, health, and disease. However, our knowledge of the mechanical conditions that promote engineered cartilage maturation or tissue repair is still incomplete. Current in vitro models that allow precise control of the local mechanical environment have been dramatically limited by very low throughput, usually just a few specimens per experiment. To overcome this constraint, we have developed a new device for the high throughput compressive loading of tissue constructs: the High Throughput Mechanical Activator for Cartilage Engineering (HiT-MACE), which allows the mechanoactivation of 6 times more samples than current technologies. With HiT-MACE we were able to apply cyclic loads in the physiological (e.g., equivalent to walking and normal daily activity) and supra-physiological range (e.g., injurious impacts or extensive overloading) to up to 24 samples in one single run. In this report, we compared the early response of cartilage to physiological and supra-physiological mechanical loading to the response to IL-1β exposure, a common but rudimentary in vitro model of cartilage osteoarthritis. Physiological loading rapidly upregulated gene expression of anabolic markers along the TGF-β1 pathway. Notably, TGF-β1 or serum was not included in the medium. Supra-physiological loading caused a mild catabolic response while IL-1β exposure drove a rapid anabolic shift. This aligns well with recent findings suggesting that overloading is a more realistic and biomimetic model of cartilage degeneration. Taken together, these findings showed that the application of HiT-MACE allowed the use of larger number of samples to generate higher volume of data to effectively explore cartilage mechanobiology, which will enable the design of more effective repair and rehabilitation strategies for degenerative cartilage pathologies.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, Palermo, Italy,Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Davide Marino
- Department of Engineering, University of Palermo, Palermo, Italy,Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roberto Di Gesù
- Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA,Fondazione Ri.MED, Palermo, Italy
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, Palermo, Italy,INSTM, Palermo Research Unit, Palermo, Italy
| | - Valerio Brucato
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA,Fondazione Ri.MED, Palermo, Italy,*Riccardo Gottardi,
| |
Collapse
|
4
|
Sakata S, Kunimatsu R, Tsuka Y, Nakatani A, Hiraki T, Gunji H, Hirose N, Yanoshita M, Putranti NAR, Tanimoto K. High-Frequency Near-Infrared Diode Laser Irradiation Attenuates IL-1β-Induced Expression of Inflammatory Cytokines and Matrix Metalloproteinases in Human Primary Chondrocytes. J Clin Med 2020; 9:jcm9030881. [PMID: 32213810 PMCID: PMC7141534 DOI: 10.3390/jcm9030881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 01/15/2023] Open
Abstract
High-frequency near-infrared diode laser provides a high-peak output, low-heat accumulation, and efficient biostimulation. Although these characteristics are considered suitable for osteoarthritis (OA) treatment, the effect of high-frequency near-infrared diode laser irradiation in in vitro or in vivo OA models has not yet been reported. Therefore, we aimed to assess the biological effects of high-frequency near-infrared diode laser irradiation on IL-1β-induced chondrocyte inflammation in an in vitro OA model. Normal Human Articular Chondrocyte-Knee (NHAC-Kn) cells were stimulated with human recombinant IL-1β and irradiated with a high-frequency near-infrared diode laser (910 nm, 4 or 8 J/cm2). The mRNA and protein expression of relevant inflammation- and cartilage destruction-related proteins was analyzed. Interleukin (IL) -1β treatment significantly increased the mRNA levels of IL-1β, IL-6, tumor necrosis factor (TNF) -α, matrix metalloproteinases (MMP) -1, MMP-3, and MMP-13. High-frequency near-infrared diode laser irradiation significantly reduced the IL-1β-induced expression of IL-1β, IL-6, TNF-α, MMP-1, and MMP-3. Similarly, high-frequency near-infrared diode laser irradiation decreased the IL-1β-induced increase in protein expression and secreted levels of MMP-1 and MMP-3. These results highlight the therapeutic potential of high-frequency near-infrared diode laser irradiation in OA.
Collapse
Affiliation(s)
| | - Ryo Kunimatsu
- Correspondence: ; Tel.: +81-82-257-5686; Fax: +81-82-257-5687
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hirose N, Okamoto Y, Yanoshita M, Asakawa Y, Sumi C, Takano M, Nishiyama S, Su SC, Mitsuyoshi T, Kunimatsu R, Tanne K, Tanimoto K. Protective effects of cilengitide on inflammation in chondrocytes under excessive mechanical stress. Cell Biol Int 2020; 44:966-974. [PMID: 31876323 DOI: 10.1002/cbin.11293] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/21/2019] [Indexed: 01/04/2023]
Abstract
Chondrocytes constantly receive external stimuli, which regulates remodeling. An optimal level of mechanical stress is essential for maintaining chondrocyte homeostasis, however, excessive mechanical stress induces inflammatory cytokines and protease, such as matrix metalloproteinases (MMPs). Therefore, excessive mechanical stress is considered to be one of the main causes to cartilage destruction leading to osteoarthritis (OA). Integrins are well-known as cell adhesion molecules and act as receptors for extracellular matrix (ECM), and are believed to control intracellular signaling pathways both physically and chemically as a mechanoreceptor. However, few studies have focused on the roles and functions of integrins in inflammation caused by excessive mechanical stress. In this study, we examined the relationship between integrins (αVβ3 and αVβ5) and the expression of inflammatory factors under mechanical loading in chondrocytes by using an integrin receptor antagonist (cilengitide). Cilengitide suppressed the gene expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-3 (MMP-3), and MMP-13 induced by excessive mechanical stress. In addition, the protein expression of IL1-β and MMP-13 was also inhibited by the addition of cilengitide. Next, we investigated the involvement of intracellular signaling pathways in stress-induced integrin signaling in chondrocytes by using western blotting. The levels of p-FAK, p-ERK, p-JNK, and p-p38 were enhanced by excessive mechanical stress and the enhancement was suppressed by treatment with cilengitide. In conclusion, this study revealed that excessive mechanical stress may activate integrins αVβ3 and αVβ5 on the surface of chondrocytes and thereby induce an inflammatory reaction by upregulating the expression of IL-1β, TNF-α, MMP-3, and MMP-13 through phosphorylation of FAK and MAPKs.
Collapse
Affiliation(s)
- Naoto Hirose
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| | - Yuki Okamoto
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Makoto Yanoshita
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuki Asakawa
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| | - Chikako Sumi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Mami Takano
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| | - Sayuri Nishiyama
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| | - Shao-Ching Su
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| | - Tomomi Mitsuyoshi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuo Tanne
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3 Minami-ku, Hiroshima-shi, Hiroshima prefecture, 7348551, Japan
| |
Collapse
|
6
|
Cynaropicrin is dual regulator for both degradation factors and synthesis factors in the cartilage metabolism. Life Sci 2016; 158:70-7. [DOI: 10.1016/j.lfs.2016.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023]
|
7
|
Tanne K, Okamoto Y, Su SC, Mitsuyoshi T, Asakawa-Tanne Y, Tanimoto K. Current status of temporomandibular joint disorders and the therapeutic system derived from a series of biomechanical, histological, and biochemical studies. APOS TRENDS IN ORTHODONTICS 2014. [DOI: 10.4103/2321-1407.148014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This article was designed to report the current status of temporomandibular joint disorders (TMDs) and the therapeutic system on the basis of a series of clinical, biomechanical, histological and biochemical studies in our research groups. In particular, we have focused on the association of degenerative changes of articular cartilage in the mandibular condyle and the resultant progressive condylar resorption with mechanical stimuli acting on the condyle during the stomatognathic function. In a clinical aspect, the nature and prevalence of TMDs, association of malocclusion with TMDs, association of condylar position with TMDs, association of craniofacial morphology with TMDs, and influences of TMDs, TMJ-osteoarthritis (TMJ-OA) in particular, were examined. In a biomechanical aspect, the nature of stress distribution in the TMJ from maximum clenching was analyzed with finite element method. In addition, the pattern of stress distribution was examined in association with varying vertical discrepancies of the craniofacial skeleton and friction between the articular disk and condyle. The results demonstrated an induction of large compressive stresses in the anterior and lateral areas on the condyle by the maximum clenching and the subsequent prominent increases in the same areas of the mandibular condyle as the vertical skeletal discrepancy became more prominent. Increase of friction at the articular surface was also indicated as a cause of larger stresses and the relevant disk displacement, which further induced an increase in stresses in the tissues posterior to the disks, indicating an important role of TMJ disks as a stress absorber. In a histological or biological aspect, increase in TMJ loading simulated by vertical skeletal discrepancy, which has already been revealed by the preceding finite element analysis or represented by excessive mouth opening, produced a decrease in the thickness of cartilage layers, an increase in the numbers of chondroblasts and osteoclasts and the subsequent degenerative changes in the condylar cartilage associated with the expression of bone resorption-related factors. In a biochemical or molecular and cellular aspect, excessive mechanical stimuli, irrespective of compressive or tensile stress, induced HA fragmentation, expression of proinflammatory cytokines, an imbalance between matrix metalloproteinases and the tissue inhibitors, all of which are assumed to induce lower resistance to external stimuli and degenerative changes leading to bone and cartilage resorption. Excessive mechanical stimuli also reduced the synthesis of superficial zone protein in chondrocytes, which exerts an important role in the protection of cartilage and bone layers from the degenerative changes. It is also revealed that various cytoskeletal changes induced by mechanical stimuli are transmitted through a stretch-activated or Ca2+channel. Finally, on the basis of the results from a series of studies, it is demonstrated that optimal intra-articular environment can be achieved by splint therapy, if indicated, followed by occlusal reconstruction with orthodontic approach in patients with myalgia of the masticatory muscles, and TMJ internal derangement or anterior disk displacement with or without reduction. It is thus shown that orthodontic treatment is available for the treatment of TMDs and the long-term stability after treatment.
Collapse
Affiliation(s)
- Kazuo Tanne
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuki Okamoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shao-Ching Su
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomomi Mitsuyoshi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuki Asakawa-Tanne
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
8
|
Role of heme oxygenase-1 in inflammatory response induced by mechanical stretch in synovial cells. Inflamm Res 2011; 60:861-7. [DOI: 10.1007/s00011-011-0346-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/29/2011] [Accepted: 05/05/2011] [Indexed: 12/22/2022] Open
|