1
|
Barrantes K, Chacón-Jiménez L, Rivera-Montero L, Segura-Villalta A, Badilla-Aguilar A, Alfaro-Arrieta E, Rivera-Navarro P, Méndez-Chacón E, Santamaría-Ulloa C. Challenges detecting SARS-CoV-2 in Costa Rican domestic wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165393. [PMID: 37433341 DOI: 10.1016/j.scitotenv.2023.165393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
This study presents the development of a SARS-CoV-2 detection method for domestic wastewater and river water in Costa Rica, a middle-income country in Central America. Over a three-year period (November to December 2020, July to November 2021, and June to October 2022), 80 composite wastewater samples (43 influent and 37 effluent) were collected from a Wastewater Treatment Plant (SJ-WWTP) located in San José, Costa Rica. Additionally, 36 river water samples were collected from the Torres River near the SJ-WWTP discharge site. A total of three protocols for SARS-CoV-2 viral concentration and RNA detection and quantification were analyzed. Two protocols using adsorption-elution with PEG precipitation (Protocol A and B, differing in the RNA extraction kit; n = 82) were used on wastewater samples frozen prior to concentration, while wastewater (n = 34) collected in 2022 were immediately concentrated using PEG precipitation. The percent recovery of Bovine coronavirus (BCoV) was highest using the Zymo Environ Water RNA (ZEW) kit with PEG precipitation executed on the same day as collection (mean 6.06 % ± 1.37 %). It was lowest when samples were frozen and thawed, and viruses were concentrated using adsorption-elution and PEG concentration methods using the PureLink™ Viral RNA/DNA Mini (PLV) kit (protocol A; mean 0.48 % ± 0.23 %). Pepper mild mottle virus and Bovine coronavirus were used as process controls to understand the suitability and potential impact of viral recovery on the detection/quantification of SARS-CoV-2 RNA. Overall, SARS-CoV-2 RNA was detected in influent and effluent wastewater samples collected in 2022 but not in earlier years when the method was not optimized. The burden of SARS-CoV-2 at the SJ-WWTP decreased from week 36 to week 43 of 2022, coinciding with a decline in the national COVID-19 prevalence rate. Developing comprehensive nationwide surveillance programs for wastewater-based epidemiology in low-middle-income countries involves significant technical and logistical challenges.
Collapse
Affiliation(s)
- Kenia Barrantes
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | - Luz Chacón-Jiménez
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | - Luis Rivera-Montero
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | | | - Andrei Badilla-Aguilar
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Ernesto Alfaro-Arrieta
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Pablo Rivera-Navarro
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Ericka Méndez-Chacón
- School of Statistics, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica.
| | | |
Collapse
|
2
|
TAMTA SHIKA, VINODHKUMAR OR, KARTHIKEYAN A, DUBAL ZB, KHAN SHARUN, A SAIED ABDULRAHMAN, DHAWAN MANISH, DHAMA KULDEEP, MALIK YS. Epidemiological profiling of SARS-CoV-2 with focus on one-health approaches in mitigating COVID-19 pandemic. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i10.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Of the 1,415 human pathogens identified, 175 are responsible for causing emerging diseases, 132 are zoonotic and majority of the diseases are categorized as emerging or re-emerging. Emerging novel Coronavirus (COVID- 19) is one of them, and it is responsible for causing social and economically critical disease in both humans and animals. This review presents the understanding of epidemiological characteristics of the COVID-19 pandemic related to host, agent, and the environment with transmission and spread of the disease for better prevention of the COVID-19. The inclination of the viruses to spillover between different species and determining the number of the reservoir of coronaviruses in an entirely new host to create infection is of emerging importance. The understanding of disease patterns will potentiate our expertise to alert how, when, and where the potential epidemic will occur. One health approach involves co-operation from all the sectors, including healthcare (medical and veterinary), environmental, pharmaceutical, educational, research, police, and administration, to combat the COVID-19 pandemic and reduce the public health threat.
Collapse
|