1
|
Wang S, Liu Z, Li X, Guo H, Zhang Z, Pang B, Gao Y, Cullen PJ, Zhou R. Development of pilot-scale plasma bubble reactors for efficient antibiotics removal in wastewater. ENVIRONMENTAL RESEARCH 2025; 264:120310. [PMID: 39521258 DOI: 10.1016/j.envres.2024.120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Plasma bubble (PB) is a promising technology to control antibiotic wastewater pollution. However, the practical implementation of PB technology at the industrial-scale is still underdeveloped. In addition, the influence of different discharge modes for PB on wastewater treatment is largely unknown. This study designed pilot-scale PB reactors with different discharge modes to investigate the degradation effect of norfloxacin (NOR) and tetracycline (TC) in bulk tap water. Results indicate that the dielectric barrier discharge (DBD) mode with low average discharge power demonstrates superior degradation ability and higher production of O3(g) and .O2-(aq) compared to the spark mode which exhibits the high-intensity spark discharge in the tip area of the tube. After 40 min of treatment in a Double DBD reactor, 97.4% and 100% of NOR and TC are removed from 2 L tap water, attributed to the accumulation of antibiotic molecules by PBs and the in-situ generation of O3(g) and .O2-(aq) produced by plasma. Furthermore, a larger-scale PB reactor is developed by creating an array of four DBD reactors, effectively degrading 8 L mixed antibiotics solution. This study provides valuable insights for PB reactor design and the degradation performance of antibiotic wastewater, which will contribute to the further development of synergistic systems for plasma degradation.
Collapse
Affiliation(s)
- Sitao Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.
| | - Xin Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Hezhi Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Zekai Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Bolun Pang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Yuting Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.
| |
Collapse
|
2
|
Wang F, Zhang Q, An R, Lyu C, Xu J, Wang D. Reactive species of plasma-activated water for murine norovirus 1 inactivation. Food Res Int 2024; 194:114877. [PMID: 39232515 DOI: 10.1016/j.foodres.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human norovirus (HuNoV), the leading cause of foodborne acute gastroenteritis, poses a serious threat to public health. Traditional disinfection methods lead to destructions of food properties and functions, and/or environmental contaminations. Green and efficient approaches are urgently needed to disinfect HuNoV. Plasma-activated water (PAW) containing amounts of reactive species is an emerging nonthermal and eco-friendly disinfectant towards the pathogenic microorganisms. However, the disinfection efficacy and mechanism of PAW on HuNoV has not yet been studied. Murine norovirus 1 (MNV-1) is one of the most commonly used HuNoV surrogates to evaluate the efficacy of disinfectants. In the current study, the inactivation efficacy of MNV-1 by PAW was investigated. The results demonstrated that PAW significantly inactivated MNV-1, reducing the viral titer from approximately 6 log10 TCID50/mL to non-detectable level. The decreased pH, increased oxidation-reduction potential (ORP) and conductivity of PAW were observed compared with that of deionized water. Compositional analysis revealed that hydrogen peroxide (H2O2), nitrate (NO3-) and hydroxyl radical (OH) were the functional reactive species in MNV-1 inactivation. L-histidine could scavenge most of the inactivation effect in a concentration-dependent manner. Moreover, PAW could induce damage to viral proteins. Part of MNV-1 particles was destroyed, while others were structurally intact without infectiousness. After 45 days of storage at 4 °C, PAW generated with 80 % O2 and 100 % O2 could still reduce over 4 log10 TCID50/mL of the viral titer. In addition, PAW prepared using hard water induced approximately 6 log10 TCID50/mL reduction of MNV-1. PAW treatment of MNV-1-inoculated blueberries reduced the viral titer from 3.79 log10 TCID50/mL to non-detectable level. Together, findings of the current study uncovered the crucial reactive species in PAW inactivate MNV-1 and provided a potential disinfection strategy to combat HuNoV in foods, water, and environment.
Collapse
Affiliation(s)
- Fengqing Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jialun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Song Z, Jiang Y, Chen C, Ding C, Chen H. Effect of Plasma-Activated Water on the Cellulase-Producing Strain Aspergillus niger A32. J Fungi (Basel) 2024; 10:568. [PMID: 39194894 DOI: 10.3390/jof10080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the effect and mechanism of plasma-activated water (PAW) on Aspergillus niger, PAW was prepared using a needle array-plate dielectric barrier discharge plasma system. The concentrations of long-lived reactive oxygen and nitrogen species (RONS), namely, H2O2, NO2-, and NO3-, in the PAW were 48.76 mg/L, 0.046 mg/L, and 172.36 mg/L, respectively. Chemically activated water (CAW) with the same concentration of long-lived RONS was also prepared for comparison. A. niger A32 was treated with PAW and CAW. After treatment, the treated strains were observed and analyzed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to screen probable mutants. The results indicated that the pH, conductivity, and ORP values of PAW were 2.42, 1935 μS/cm, and 517.07 mV, respectively. In contrast, the pH and ORP values of CAW were 6.15 and 301.73 mV, respectively, which differed significantly from those of PAW. In addition, the conductivity of CAW showed no change. SEM and TEM analyses revealed that A. niger A32 treated with CAW exhibited less damage compared with the control. In contrast, A. niger A32 treated with PAW showed significant shrinkage, deformation, and exudate attachment over time. Following PAW treatment, after four passages, a high cellulase-producing stable mutant strain A-WW5 was screened, exhibiting a filter paper enzyme activity of 29.66 U/mL, a cellulose endonuclease activity of 13.79 U/mL, and a β-glucosidase activity of 27.13 U/mL. These values were found to be 33%, 38%, and 2.1% higher than those of the original fungus sample, respectively. In total, 116 SNPs and 61 InDels were present in the genome of the mutant strain A-WW5. The above findings indicate that the impact of PAW on A. niger is not only attributed to long-lasting H2O2, NO2-, and NO3- particles but also to other short-lived active particles; PAW is expected to become a new microbial breeding mutagen.
Collapse
Affiliation(s)
- Zhiqing Song
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yingwei Jiang
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Chan Chen
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Changjiang Ding
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hao Chen
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
4
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Vyas HK, Xia B, Alam D, Gracie NP, Rothwell JG, Rice SA, Carter D, Cullen PJ, Mai-Prochnow A. Plasma activated water as a pre-treatment strategy in the context of biofilm-infected chronic wounds. Biofilm 2023; 6:100154. [PMID: 37771391 PMCID: PMC10522953 DOI: 10.1016/j.bioflm.2023.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
Healing and treatment of chronic wounds are often complicated due to biofilm formation by pathogens. Here, the efficacy of plasma activated water (PAW) as a pre-treatment strategy has been investigated prior to the application of topical antiseptics polyhexamethylene biguanide, povidone iodine, and MediHoney, which are routinely used to treat chronic wounds. The efficacy of this treatment strategy was determined against biofilms of Escherichia coli formed on a plastic substratum and on a human keratinocyte monolayer substratum used as an in vitro biofilm-skin epithelial cell model. PAW pre-treatment greatly increased the killing efficacy of all the three antiseptics to eradicate the E. coli biofilms formed on the plastic and keratinocyte substrates. However, the efficacy of the combined PAW-antiseptic treatment and single treatments using PAW or antiseptic alone was lower for biofilms formed in the in vitro biofilm-skin epithelial cell model compared to the plastic substratum. Scavenging assays demonstrated that reactive species present within the PAW were largely responsible for its anti-biofilm activity. PAW treatment resulted in significant intracellular reactive oxygen and nitrogen species accumulation within the E. coli biofilms, while also rapidly acting on the microbial membrane leading to outer membrane permeabilisation and depolarisation. Together, these factors contribute to significant cell death, potentiating the antibacterial effect of the assessed antiseptics.
Collapse
Affiliation(s)
- Heema K.N. Vyas
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
- The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Binbin Xia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - David Alam
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas P. Gracie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Joanna G. Rothwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott A. Rice
- Agriculture and Food, Microbiomes for One Systems Health, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Dee Carter
- The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Patrick J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Anne Mai-Prochnow
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Arguello-Sánchez R, López-Callejas R, Rodríguez-Méndez BG, Scougall-Vilchis R, Velázquez-Enríquez U, Mercado-Cabrera A, Peña-Eguiluz R, Valencia-Alvarado R, Medina-Solís CE. Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7204. [PMID: 38005133 PMCID: PMC10672626 DOI: 10.3390/ma16227204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Non-thermal plasmas (NTPs), known as cold atmospheric plasmas (CAPs), hold great potential for diverse medical applications, including dentistry. However, traditional linear and rigid dielectric barrier discharge reactors used for NTP generation encounter limitations in accessing oral cavities and root canals. To address this issue, we have developed an innovative NTP reactor featuring an angled end for improved accessibility. The central copper electrode, with a 0.59 mm diameter and adjustable length for desired angulation, is coated with zircon powder (ZrSiO4) to ensure stable NTP generation. This central electrode is housed within a stainless steel tube (3 mm internal diameter, 8 mm external diameter, and 100 mm length) with a 27° angle at one end, making it ergonomically suitable for oral applications. NTP generation involves polarizing the reactor electrodes with 13.56 MHz radio frequency signals, using helium gas as a working medium. We introduce plasma-treated water (PTW) as an adjunctive therapy to enhance biofilm eradication within root canals. A synergistic approach combining NTP and PTW is employed and compared to the gold standard (sodium hypochlorite, NaOCl), effectively neutralizing Enterococcus faecalis bacteria, even in scenarios involving biofilms. Moreover, applying NTP in both gaseous and liquid environments successfully achieves bacterial inactivation at varying treatment durations, demonstrating the device's suitability for medical use in treating root canal biofilms. The proposed NTP reactor, characterized by its innovative design, offers a practical and specific approach to plasma treatment in dental applications. It holds promise in combatting bacterial infections in root canals and oral cavities.
Collapse
Affiliation(s)
- Raúl Arguello-Sánchez
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
| | - Régulo López-Callejas
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | | | - Rogelio Scougall-Vilchis
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
| | - Ulises Velázquez-Enríquez
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
| | - Antonio Mercado-Cabrera
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | - Rosendo Peña-Eguiluz
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | - Raúl Valencia-Alvarado
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | - Carlo Eduardo Medina-Solís
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
- Dentistry Academic Area of the Health Sciences Institute, Autonomous University of Hidalgo State, Exhacienda de la Concepción S/N Carretera Actopan-Tilcuautla, San Agustin Tlaxiaca 42160, Mexico
| |
Collapse
|
7
|
Hadinoto K, Niemira BA, Trujillo FJ. A review on plasma-activated water and its application in the meat industry. Compr Rev Food Sci Food Saf 2023; 22:4993-5019. [PMID: 37799092 DOI: 10.1111/1541-4337.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Meat is a nutritious food with a short shelf life, making it challenging to ensure safety, quality, and nutritional value. Foodborne pathogens and oxidation are the main concerns that lead to health risks and economic losses. Conventional approaches like hot water, steam pasteurization, and chemical washes for meat decontamination improve safety but cause nutritional and quality issues. Plasma-activated water (PAW) is a potential alternative to thermal treatment that can reduce oxidation and microbial growth, an essential factor in ensuring safety, quality, and nutritional value. This review explores the different types of PAW and their physiochemical properties. It also outlines the reaction pathways involved in the generation of short-lived and long-lived reactive nitrogen and oxygen species (RONS) in PAW, which contribute to its antimicrobial abilities. The review also highlights current studies on PAW inactivation against various planktonic bacteria, as well as critical processing parameters that can improve PAW inactivation efficacy. Promising applications of PAW for meat curing, thawing, and decontamination are discussed, with emphasis on the need to understand how RONS in PAW affect meat quality. Recent reports on combining PAW with ultrasound, mild heating, and non-thermal plasma to improve inactivation efficacy are also presented. Finally, the need to develop energy-efficient systems for the production and scalability of PAW is discussed for its use as a potential meat disinfectant without compromising meat quality.
Collapse
Affiliation(s)
- Koentadi Hadinoto
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Brendan A Niemira
- USDA-ARS, Eastern Regional Research Center, Food Safety and Intervention Technologies Unit, Wyndmoor, Pennsylvania, USA
| | - Francisco J Trujillo
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|