1
|
Li X, Li L, Chu X, Liu X, Chen G, Guo Q, Zhang Z, Wang M, Wang S, Tahn A, Sun Y, Feng X. Photothermal CO 2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat Commun 2024; 15:5639. [PMID: 38965244 PMCID: PMC11224241 DOI: 10.1038/s41467-024-49928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Photothermal CO2 conversion to ethanol offers a sustainable solution for achieving net-zero carbon management. However, serious carrier recombination and high C-C coupling energy barrier cause poor performance in ethanol generation. Here, we report a Cu/Cu2Se-Cu2O heterojunction-nanosheet array, showcasing a good ethanol yield under visible-near-infrared light without external heating. The Z-scheme Cu2Se-Cu2O heterostructure provides spatially separated sites for CO2 reduction and water oxidation with boosted carrier transport efficiency. The microreactors induced by Cu2Se nanosheets improve the local concentration of intermediates (CH3* and CO*), thereby promoting C-C coupling process. Photothermal effect of Cu2Se nanosheets elevates system's temperature to around 200 °C. Through synergizing electron and heat flows, we achieve an ethanol generation rate of 149.45 µmol g-1 h-1, with an electron selectivity of 48.75% and an apparent quantum yield of 0.286%. Our work can serve as inspiration for developing photothermal catalysts for CO2 conversion into multi-carbon chemicals using solar energy.
Collapse
Affiliation(s)
- Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Li Li
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xingyuan Chu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Xiaohui Liu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Guangbo Chen
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Mingchao Wang
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Shuming Wang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Alexander Tahn
- Dresden Center for Nanoanalysis (DCN), Dresden University of Technology, Dresden, 01069, Germany
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, P. R. China.
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany.
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
2
|
Shakibi Nia N, Griesser C, Mairegger T, Wernig EM, Bernardi J, Portenkirchner E, Penner S, Kunze-Liebhäuser J. Titanium Oxycarbide as Platinum-Free Electrocatalyst for Ethanol Oxidation. ACS Catal 2024; 14:324-329. [PMID: 38205023 PMCID: PMC10775143 DOI: 10.1021/acscatal.3c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The compound material titanium oxycarbide (TiOC) is found to be an effective electrocatalyst for the electrochemical oxidation of ethanol to CO2. The complete course of this reaction is one of the main challenges in direct ethanol fuel cells (DEFCs). While TiOC has previously been investigated as catalyst support material only, in this study we show that TiOC alone is able to oxidize ethanol to acetaldehyde without the need of expensive noble metal catalysts like Pt. It is suggested that this behavior is attributed to the presence of both undercoordinated sites, which allow ethanol to adsorb, and oxygenated sites, which facilitate the activation of water. This is a milestone in DEFC research and development and opens up innovative possibilities for the design of catalyst materials for intermediate temperature fuel cells.
Collapse
Affiliation(s)
- Niusha Shakibi Nia
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Griesser
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Mairegger
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Eva-Maria Wernig
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Bernardi
- USTEM, Technische Universität Wien, Stadionalle 2, 1020 Wien, Austria
| | | | - Simon Penner
- Institute
of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | | |
Collapse
|
3
|
Wei K, Lin H, Zhao X, Zhao Z, Marinkovic N, Morales M, Huang Z, Perlmutter L, Guan H, Harris C, Chi M, Lu G, Sasaki K, Sun S. Au/Pt Bimetallic Nanowires with Stepped Pt Sites for Enhanced C-C Cleavage in C2+ Alcohol Electro-oxidation Reactions. J Am Chem Soc 2023; 145:19076-19085. [PMID: 37606196 DOI: 10.1021/jacs.3c07027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient C-C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C-C bond cleavage is indeed enhanced on the undercoordinated Pt-Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.
Collapse
Affiliation(s)
- Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Honghong Lin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xueru Zhao
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Michael Morales
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhennan Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Laura Perlmutter
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| | - Kotaro Sasaki
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
4
|
Rigi F, Yavari Z. Biosynthesize of Zinc Oxide Nanoparticles and Their Promoter Actions in the Application of Pd/ZnO Catalyst for Electro-Oxidation of Ethanol. Catal Letters 2023. [DOI: 10.1007/s10562-022-04159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Pan D, Xue Y, Xiao S, Ouyang Y, Zuo F, Lou F, Li X. Research on UO 2 modification of a direct ethanol fuel cell Pt/C catalyst. RSC Adv 2022; 12:22565-22573. [PMID: 36105954 PMCID: PMC9373003 DOI: 10.1039/d2ra02414d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
Radioactive UO2 powder was prepared by hydrothermal method and a set of Pt-xUO2/C catalysts were synthesized by impregnation method for solving the problem of low activity and easy poisoning of anode Pt/C catalysts for a direct ethanol fuel cell. XRD, TEM, EDS, XPS and ICP-MS characterization showed the successful loading of Pt and UO2 onto the carbon carrier. Electrochemical workstation and single cell test results confirm that the catalytic performance of Pt-10% UO2/C is significantly better than Pt/C-eg. It is speculated that the synergistic effect of Pt and U enhances the catalytic activity and UO2 improves the resistance to CO poisoning by releasing O2 stored in the lattice space, while the α-particles released by 235U can also generate radiolysis product OH and promote the oxidative desorption of CO from the Pt surface.
Collapse
Affiliation(s)
- Dashu Pan
- China Institute of Atomic Energy Beijing 102413 China
| | - Yubing Xue
- China Institute of Atomic Energy Beijing 102413 China
| | - Songtao Xiao
- China Institute of Atomic Energy Beijing 102413 China
| | | | - Feng Zuo
- School of Nuclear Science and Technology, Xi'an Jiaotong University Xi'an 710049 China
| | - Fuyan Lou
- China Institute of Atomic Energy Beijing 102413 China
| | - Xiang Li
- China Institute of Atomic Energy Beijing 102413 China
| |
Collapse
|
6
|
El-Jemni MA, Abdel-Samad HS, AlKordi MH, Hassan HH. Normalization of the EOR catalytic efficiency measurements based on RRDE study for simply fabricated cost-effective Co/graphite electrode for DAEFCs. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
He Y, Chen C, Liu Y, Yang Y, Li C, Shi Z, Han Y, Feng S. Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic ZnIn 2S 4 with Indium Vacancies for Boosting Photocatalytic CO 2 Reduction. NANO LETTERS 2022; 22:4970-4978. [PMID: 35678583 DOI: 10.1021/acs.nanolett.2c01666] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The influence of defects on quantitative carrier dynamics is still unclear. Therefore, full-spectrum responsive metallic ZnIn2S4 (VIn-rich-ZIS) rich in indium vacancies and exhibiting high CO2 photoreduction efficiency was synthesized for the first time. The influence of the defects on the carrier dynamic parameters was studied quantitatively; the results showed that the minority carrier diffusion length (LD) is closely related to the catalytic performance. In situ infrared spectroscopy and theoretical calculations revealed that the presence of indium vacancies lowers the energy barrier for CO2 to CO conversion via the COOH* intermediate. Hence, the high rate of CO evolution reaches 298.0 μmol g-1 h-1, a nearly 28-fold enhancement over that with ZnIn2S4 (VIn-poor-ZIS), which is not rich in indium vacancies. This work fills the gaps between the catalytic performance of defective photocatalysts and their carrier dynamics and may offer valuable insight for understanding the mechanism of photocatalysis and designing more efficient defective photocatalysts.
Collapse
Affiliation(s)
- Yiqiang He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yuxin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
8
|
Electro-Catalytic Properties of Palladium and Palladium Alloy Electro-Catalysts Supported on Carbon Nanofibers for Electro-Oxidation of Methanol and Ethanol in Alkaline Medium. Catalysts 2022. [DOI: 10.3390/catal12060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbon nanofibers (CNFs) supported by Pd and Pd-Sn electro-catalysts were prepared by the chemical reduction method using ethylene glycol as the reducing agent. Their physicochemical characteristics were studied using high resolution-transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Bruanaer-Emmett-Teller (BET) analysis. FTIR revealed that oxygen, hydroxyl, carboxylic and carbonyl functional groups facilitated the dispersion of Pd and Sn nanoparticles. The doping of Pd with Sn to generate PdSn alloy was also confirmed by XPS data. The amorphous nature of CNFs was confirmed by XRD patterns which exhibited the Pd diffraction peaks. When Sn was added to Pd/CNFs, the diffraction peaks moved to lower angles. HRTEM images revealed that the CNFs with cylindrical shape-like morphology and also Pd-Sn nanoparticles dispersed on carbon support. The catalytic activity and stability towards alcohol electro-oxidation in alkaline medium at room temperature was evaluated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The obtained Pd-Sn/CNFs electro-catalyst exhibited a better electro-catalytic activity than Pd/CNFs and Pd/C electro-catalysts for both methanol and ethanol oxidation. The improvement of the electrochemical performance was associated with the synergistic effect via the addition of Sn which modified the Pd atom arrangement, thereby promoting oxidation through a dehydrogenation pathway. Furthermore, SnO2 generates abundant OH species which helps with increasing the rate of the oxidative removal of carbon monoxide (CO) intermediates from Pd sites.
Collapse
|
9
|
Yeh PH, Venkatesan S, Chen HC, Lee YL. In-Situ surface enhanced infrared absorption spectroscopy study of electrocatalytic oxidation of ethanol on Platinum/Gold surface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120902. [PMID: 35074672 DOI: 10.1016/j.saa.2022.120902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The behavior of ethanol oxidation reaction on composite electrodes prepared by deposition platinum on a gold surface (Pt/Au) were studied by cyclic voltammetry and surface enhanced infrared absorption spectroscopy (SEIRAS) analysis. The results show that the Pt electrode has high oxidation activity and significant poison behavior; on the contrary, the Au electrode demonstrates low activity without a poison peak. The SEIRAS analyses reveal that both carbon monoxide (CO) and carbon dioxide (CO2) appear during anode sweeping, and the CO peak density decreases with increasing potential and finally is eliminated. During the cathodic scanning, the CO peak reappears, and the peak intensity increases with scanning cycles, demonstrating a high poison behavior and the C1 reaction route on Pt. On the Au electrode, CO2 and CO peaks were not observed; instead, an acetic acid peak appeared, indicating a C2 reaction path. For the Pt/Au composited electrodes, the electrochemical activities of the electrodes, as well as their poison behavior, increased with the deposition amount of Pt. However, the intensities of the poison peaks are smaller than those of oxidation ones; therefore, a higher tolerance to the CO poison can be achieved. For the 2 m-Pt/Au composite electrode, the activity is close to that of pure Pt, but the poison tolerance is 3 times the value of Pt.
Collapse
Affiliation(s)
- Po-Hsuan Yeh
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | | | - Hsiao-Chi Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yuh-Lang Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
10
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible-Light-Driven Photocatalytic CO 2 Reduction to CO/CH 4 Using a Metal-Organic "Soft" Coordination Polymer Gel. Angew Chem Int Ed Engl 2022; 61:e202116094. [PMID: 35129254 DOI: 10.1002/anie.202116094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/11/2022]
Abstract
The self-assembly of a well-defined and astutely designed, low-molecular weight gelator (LMWG) based linker with a suitable metal ion is a promising method for preparing photocatalytically active coordination polymer gels. Here, we report the design, synthesis, and gelation behaviour of a tetrapodal LMWG based on a porphyrin core connected to four terpyridine units (TPY-POR) through amide linkages. The self-assembly of TPY-POR LMWG with RuII ions results in a Ru-TPY-POR coordination polymer gel (CPG), with a nanoscroll morphology. Ru-TPY-POR CPG exhibits efficient CO2 photoreduction to CO (3.5 mmol g-1 h-1 ) with >99 % selectivity in the presence of triethylamine (TEA) as a sacrificial electron donor. Interestingly, in the presence of 1-benzyl-1,4-dihydronicotinamide (BNAH) with TEA as the sacrificial electron donor, the 8e- /8H+ photoreduction of CO2 to CH4 is realized with >95 % selectivity (6.7 mmol g-1 h-1 ). In CPG, porphyrin acts as a photosensitizer and covalently attached [Ru(TPY)2 ]2+ acts as a catalytic center as demonstrated by femtosecond transient absorption (TA) spectroscopy. Further, combining information from the in situ DRIFT spectroscopy and DFT calculation, a possible reaction mechanism for CO2 reduction to CO and CH4 was outlined.
Collapse
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
11
|
Pt nanowires as electrocatalysts for proton-exchange membrane fuel cells applications: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Arjona N, Espinosa‒Magaña F, Bañuelos JA, Álvarez‒Contreras L, Guerra‒Balcázar M. Manganese oxides (Mn3O4 & α‒MnO2) as co‒catalysts in Pd‒based nanomaterials for the ethylene glycol electro‒oxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Technology Parque Tecnológico Querétaro S/NSanFandila 76703 Pedro Escobedo MEXICO
| | - Francisco Espinosa‒Magaña
- Centro de Investigación en Materiales Avanzados SC: Centro de Investigacion en Materiales Avanzados SC NanoTech MEXICO
| | - Jennifer A. Bañuelos
- Instituto Mexicano de Tecnología del Agua: Instituto Mexicano de Tecnologia del Agua Agua MEXICO
| | - Lorena Álvarez‒Contreras
- Centro de Investigación en Materiales Avanzados SC: Centro de Investigacion en Materiales Avanzados SC Science MEXICO
| | - Minerva Guerra‒Balcázar
- Universidad Autónoma de Querétaro: Universidad Autonoma de Queretaro Facultad de Ingeniería MEXICO
| |
Collapse
|
13
|
Pt-Mo/C, Pt-Fe/C and Pt-Mo-Sn/C Nanocatalysts Derived from Cluster Compounds for Proton Exchange Membrane Fuel Cells. Catalysts 2022. [DOI: 10.3390/catal12030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanosized bimetallic PtMo, PtFe and trimetallic PtMoSn catalysts deposited on highly dispersed carbon black Vulcan XC-72 were synthesized from the cluster complex compounds PtCl(P(C6H5)3)(C3H2N2(CH3)2)Mo(C5H4CH3)(CO)3, Pt(P(C6H5)3)(C3N2H2(CH3)2)Fe(CO)3(COC6H5C2C6H5), and PtCl(P(C6H5)3)(C3N2H2(CH3)2)C5H4CH3Mo(CO)3SnCl2, respectively. Structural characteristics of these catalysts were studied using X-ray diffraction (XRD), microprobe energy dispersive spectroscopy (EDX), and transmission electron microscopy (TEM). The synthesized catalysts were tested in aqueous 0.5 M H2SO4 in a three-electrode electrochemical cells and in single fuel cells. Electrocatalytic activity of PtMo/C and PtFe/C in the oxygen reduction reaction (ORR) and the activity of PtMoSn/C in electrochemical oxidation of ethanol were evaluated. It was shown that specific characteristics of the synthesized catalysts are 1.5–2 times higher than those of a commercial Pt(20%)/C catalyst. The results of experiments indicate that PtFe/C, PtMo/C, and PtMoSn/C catalysts prepared from the corresponding complex precursors can be regarded as promising candidates for application in fuel cells due to their high specific activity.
Collapse
|
14
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible‐Light‐Driven Photocatalytic CO
2
Reduction to CO/CH
4
Using a Metal–Organic “Soft” Coordination Polymer Gel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Debabrata Samanta
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Arup Kundu
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| |
Collapse
|
15
|
Zhang J, Di Q, Zhao X, Zhu W, Luan Y, Hou Z, Fan X, Zhou Y, Wang S, Quan Z. Controllable Synthesis of Platinum-Tin Intermetallic Nanoparticles with High Electrocatalytic Performance for Ethanol Oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01644j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article proposes a general approach for the preparation of intermetallic nanoparticles of Pt3Sn, PtSn, PtSn2, and PtSn4, triggered by hexamethyldisilazane (HMDS) in conjunction with SnCl2. The ethanol oxidation reaction...
Collapse
|
16
|
Yang B, Qin T, Bao Z, Lu W, Dong J, Bin D, Lu H. Synthesis of SDS-Modified Pt/Ti 3C 2T x Nanocomposite Catalysts and Electrochemical Performance for Ethanol Oxidation. NANOMATERIALS 2021; 11:nano11123174. [PMID: 34947522 PMCID: PMC8703315 DOI: 10.3390/nano11123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
It is well-known that platinum (Pt) is still the preferred material of anode catalyst in ethanol oxidation, however, the prohibitive high cost and CO poisoning of Pt metal impede the commercialization of fuel cells. Therefore, improving the utilization rate of catalysts and reduce the cost of catalyst become one of the most concerned focus in the construction of fuel cells. In this work, the Pt-based catalysts are synthesized by using different content of sodium dodecyl sulfate (SDS) modified-Ti3C2Tx support, and the dispersion regulation function of SDS modified-Ti3C2Tx supported on Pt nanoparticles is investigated. The structure, composition and morphology of different catalysts are characterized by X-ray diffraction (XRD), X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and high-resolution TEM, respectively. It is found that the Pt nanoparticles in pure Ti3C2Tx surface are serious aggregated and show poor dispersion, whereas the Pt nanoparticles in SDS modified-Ti3C2Tx have a better dispersion. The electrochemical results revealed that SDS modified-Ti3C2Tx supported Pt nanoparticles has higher electrocatalytic activity and stability in both acidic and alkaline ethanol oxidation when the dosage of SDS increases to 100 mg. These findings indicate that the SDS-Ti3C2Tx/Pt catalysts show a promising future of potential applications in fuel cells with modification of Ti3C2Tx support.
Collapse
Affiliation(s)
- Beibei Yang
- Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (B.Y.); (T.Q.); (Z.B.); (W.L.)
| | - Tian Qin
- Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (B.Y.); (T.Q.); (Z.B.); (W.L.)
| | - Ziping Bao
- Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (B.Y.); (T.Q.); (Z.B.); (W.L.)
| | - Wenqian Lu
- Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (B.Y.); (T.Q.); (Z.B.); (W.L.)
| | - Jiayu Dong
- Institute of Materials Engineering, National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, China;
| | - Duan Bin
- Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (B.Y.); (T.Q.); (Z.B.); (W.L.)
- Correspondence: (D.B.); (H.L.)
| | - Hongbin Lu
- Department of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; (B.Y.); (T.Q.); (Z.B.); (W.L.)
- Correspondence: (D.B.); (H.L.)
| |
Collapse
|
17
|
Selepe CT, Gwebu SS, Matthews T, Mashola TA, Sikeyi LL, Zikhali M, Maxakato NW. Effect of Sn Doping on Pd Electro-Catalysts for Enhanced Electro-Catalytic Activity towards Methanol and Ethanol Electro-Oxidation in Direct Alcohol Fuel Cells. NANOMATERIALS 2021; 11:nano11102725. [PMID: 34685167 PMCID: PMC8537662 DOI: 10.3390/nano11102725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Carbon nano-onions (CNOs) were successfully synthesized by employing the flame pyrolysis (FP) method, using flaxseed oil as a carbon source. The alcohol reduction method was used to prepare Pd/CNOs and Pd-Sn/CNOs electro-catalysts, with ethylene glycol as the solvent and reduction agent. The metal-nanoparticles were supported on the CNO surface without adjusting the pH of the solution. High-resolution transmission electron microscopy (HRTEM) images reveal CNOs with concentric graphite ring morphology, and also PdSn nanoparticles supported on the CNOs. X-ray diffractometry (XRD) patterns confirm that CNOs are amorphous and show the characteristic diffraction peaks of Pd. There is a shifting of Pd diffraction peaks to lower angles upon the addition of Sn compared to Pd/CNOs. X-ray photoelectron spectroscopy (XPS) results also confirm the doping of Pd with Sn to form a PdSn alloy. Fourier transform infrared spectroscopy (FTIR) displays oxygen, hydroxyl, carboxyl, and carbonyl, which facilitates the dispersion of Pd and Sn nanoparticles. Raman spectrum displays two prominent peaks of carbonaceous materials which correspond to the D and G bands. The Pd-Sn/CNOs electro-catalyst demonstrates improved electro-oxidation of methanol and ethanol performance compared to Pd/CNOs and commercial Pd/C electro-catalysts under alkaline conditions.
Collapse
Affiliation(s)
- Cyril Tlou Selepe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Sandile Surprise Gwebu
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Thabo Matthews
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Tebogo Abigail Mashola
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Ludwe Luther Sikeyi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa;
| | - Memory Zikhali
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
| | - Nobanathi Wendy Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.T.S.); (S.S.G.); (T.M.); (T.A.M.); (M.Z.)
- Correspondence: ; Tel.: +27-(0)-11-559-6151
| |
Collapse
|
18
|
Selvarani V, Kiruthika S, Gayathri A, Pournan L, V.Sudha, Muthukumaran B. Enhanced electrochemical performance of Pt–Sn–In/C nanoparticles for membraneless fuel cells. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Abstract
Electrooxidation of methanol, ethanol, and formic acid was studied on three platinum-containing electrocatalysts: PtCu/C, Pt/(SnO2/C), and Pt/C, Pt content being about 20 wt%. In all reactions, the integral specific activity of the catalysts, estimated from the results of cyclic voltammetry, grows in the Pt/C < Pt/(SnO2/C) < PtCu/C row. The influence of the reagent nature subjected to electrooxidation is manifested both in the difference of the absolute rate values of the corresponding reactions, decreasing in the order CH3OH > HCOOH > C2H5OH, and in the different ratio of these rates on different catalysts and at different potentials. Pt/(SnO2/C) catalyst containing SnO2 nanoparticles is the most active among the studied catalysts in methanol and formic acid electrooxidation reactions under potentiostatic conditions at the E = 0.60 V. Moreover, in formic acid electrooxidation reaction it is significantly superior to even the PtRu/C commercial catalyst. The reasons for the positive influence of Cu atoms and SnO2 nanoparticles on the catalytic activity of platinum are presumably associated with different effects: Interaction of the d-orbitals of copper and platinum atoms in bimetallic nanoparticles and implementation of the bifunctional catalysis mechanism on the adjacent platinum and tin dioxide nanoparticles.
Collapse
|
20
|
Yudasari N, Wiguna PA, Handayani W, Suliyanti MM, Imawan C. The formation and antibacterial activity of Zn/ZnO nanoparticle produced in Pometia pinnata leaf extract solution using a laser ablation technique. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:56. [PMID: 33424136 PMCID: PMC7778852 DOI: 10.1007/s00339-020-04197-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The single-step green synthesis has been successfully established to prepare a bi-phase structure of Zn/ZnO nanoparticles using laser ablation in a liquid medium. Nd: YAG laser with the wavelength of 1064 nm was employed to perform the laser ablation in pure water and Pometia pinnata (P. pinnata) leaf extract, with the leaf, were extracted in pure water and some concentration of ethanol. ZnO nanoparticles can be obtained via laser ablation in pure water, while the usage of P. pinnata leaf extract as the solution has caused the appearance of the bi-phase Zn/ZnO nanostructure. X-ray diffraction (XRD) pattern indicates the appearance of Zn peaks alongside with ZnO peaks with the inclusion of P. pinnata leaf extract. Transmission electron microscope (TEM) images show the change of shape from the rod-like shape into a spherical shape and smaller size spherical shape of Zn/ZnO nanoparticles in comparison with ZnO. Noticeable change of UV-visible spectrum emerges as the water was substituted by P. pinnata leaf extract. The zeta potential of Zn/ZnO prepared with P. pinnata extracted in water, with the value of - 18.9 V, reduces down to - 43.5 and - 41.1 for 20-40% of ethanol concentration, respectively. The as-prepared ZnO and Zn/ZnO colloidal samples were evaluated for their antibacterial activities against two strains Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Zn/ZnO sample shows a more substantial antibacterial effect in comparison with pure ZnO, no bacteria alive after 12 and 24 h' treatment for E. coli and S. aureus, respectively.
Collapse
Affiliation(s)
- Nurfina Yudasari
- Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 16424 Indonesia
- Research Center for Physics, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Bd. 442, South Tangerang, 15314 Indonesia
| | - Pradita A. Wiguna
- Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 16424 Indonesia
| | - Windri Handayani
- Departemen Biologi, FMIPA, Universitas Indonesia, Depok, 16424 Indonesia
| | - Maria M. Suliyanti
- Research Center for Physics, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Bd. 442, South Tangerang, 15314 Indonesia
| | - Cuk Imawan
- Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 16424 Indonesia
| |
Collapse
|
21
|
Prössl C, Kübler M, Nowroozi MA, Paul S, Clemens O, Kramm UI. Investigation of the thermal removal steps of capping agents in the synthesis of bimetallic iridium-based catalysts for the ethanol oxidation reaction. Phys Chem Chem Phys 2021; 23:563-573. [DOI: 10.1039/d0cp04900j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two iridium-based catalysts (namely IrSn and IrNi) are synthesised via a polyol route involving capping agents.
Collapse
Affiliation(s)
- Carolin Prössl
- Technical University of Darmstadt
- Catalysts and Electrocatalysts Group
- Graduate School of Excellence Energy Science and Engineering
- Department of Materials- and Earth Sciences and Department of Chemistry
- 64287 Darmstadt
| | - Markus Kübler
- Technical University of Darmstadt
- Catalysts and Electrocatalysts Group
- Graduate School of Excellence Energy Science and Engineering
- Department of Materials- and Earth Sciences and Department of Chemistry
- 64287 Darmstadt
| | - Mohammad Ali Nowroozi
- Technical University of Darmstadt
- Materialdesign durch Synthese Group
- Department of Materials- and Earth Sciences
- 64287 Darmstadt
- Germany
| | - Stephen Paul
- Technical University of Darmstadt
- Catalysts and Electrocatalysts Group
- Graduate School of Excellence Energy Science and Engineering
- Department of Materials- and Earth Sciences and Department of Chemistry
- 64287 Darmstadt
| | - Oliver Clemens
- Technical University of Darmstadt
- Materialdesign durch Synthese Group
- Department of Materials- and Earth Sciences
- 64287 Darmstadt
- Germany
| | - Ulrike I. Kramm
- Technical University of Darmstadt
- Catalysts and Electrocatalysts Group
- Graduate School of Excellence Energy Science and Engineering
- Department of Materials- and Earth Sciences and Department of Chemistry
- 64287 Darmstadt
| |
Collapse
|
22
|
Effect of Acid Treatment on Electrocatalytic Performance of PtNi Catalyst. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Wang H, Sun S, Mohamedi M. Synthesis of free-standing ternary Rh-Pt-SnO 2-carbon nanotube nanostructures as a highly active and robust catalyst for ethanol oxidation. RSC Adv 2020; 10:45149-45158. [PMID: 35516282 PMCID: PMC9058560 DOI: 10.1039/d0ra10030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
The rational design of durable materials is an important issue for improving the performance of electrocatalysts towards the ethanol oxidation reaction (EOR). In this work, binderless thin nanostructured layers of SnO2, Pt, Rh, bilayers of Pt/SnO2, Rh/Pt and tri-layers of Rh (ca. 10 nm thickness)/PtSnO2 are directly grown by pulsed laser deposition onto carbon nanotubes (CNTs). SEM analysis shows that CNTs are perfectly coated with the catalysts. The onset potentials of the CO stripping and EOR indicate that Rh/Pt/SnO2 is the most active for the CO and the EOR. The incorporation of the CNTs in the catalyst layer is outstandingly beneficial to both the catalytic current activity and the durability. Indeed Rh/Pt/SnO2/CNT delivers mass activity as high as 213.42 mA mg-1 Pt. Moreover, Rh/Pt/SnO2/CNT demonstrates not only the lowest poisoning rate (by intermediate species, such as adsorbed CO) but also the highest durability current of 132.17 mA mg-1 Pt far superior to CNT-free Rh/Pt/SnO2/CP (58.33 mA mg-1 Pt). XPS shows that SnO2, Pt and Rh are all present at the surface of Rh/Pt/SnO2/CNT, the presence of two oxophilic materials like SnO2 and Rh, implies an earlier source of OHads-species, which facilitates the oxidation of CO and assuming a second contribution from Rh is to enhance the cleavage of the C-C bond for the complete oxidation of ethanol. The 3D porous and binderless structure, the low amount of the noble catalyst, the excellent electroactivity and durability of the Rh5/PtSnO2/CNT/CP composite represents an important step in advancing its use as an anode in commercial applications in DEFC.
Collapse
Affiliation(s)
- Haixia Wang
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| | - Shuhui Sun
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| | - Mohamed Mohamedi
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| |
Collapse
|
24
|
Santos DS, Almeida CV, Tremiliosi-Filho G, Eguiluz KI, Salazar-Banda GR. Improved carbon dioxide selectivity during ethanol electrooxidation in acid media by Pb@Pt/C and Pb@PtSn/C electrocatalysts. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Ethanol electro-oxidation on carbon-supported Pt3Sn/C, Pt3Cu/C and PtSnCu/C catalysts: CV and in situ FTIR study. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01491-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
One-step microwave-assisted synthesis of carbon-supported ternary Pt-Sn-Rh alloy nanoparticles for fuel cells. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Biancolli ALG, Lopes T, Paganin VA, Ticianelli EA. PEM fuel cells fed by hydrogen from ethanol dehydrogenation reaction: Unveiling the poisoning mechanisms of the by-products. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Tian MH, Yang Y, Desmond C, Liu F, Zhu ZQ, Li QX. Pt-Surface-Enriched Platinum–Tungsten Bimetallic Nanoparticles Catalysts on Different Carbon Supports for Electro-Oxidation of Ethanol. Catal Letters 2020. [DOI: 10.1007/s10562-020-03238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
OHKUBO K, TAKAHASHI H, WATTERS EPJ, TAGUCHI M. In-situ Analysis of CO<sub>2</sub> Electroreduction on Pt and Pt Oxide Cathodes. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.19-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Keisuke OHKUBO
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| | - Hiroki TAKAHASHI
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| | - E. P. J. WATTERS
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| | - Masami TAGUCHI
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| |
Collapse
|
30
|
Dai S, Huang TH, Chien PC, Lin CA, Liu CW, Lee SW, Wang JH, Wang KW, Pan X. Optimization of Pt-Oxygen-Containing Species Anodes for Ethanol Oxidation Reaction: High Performance of Pt-AuSnO x Electrocatalyst. J Phys Chem Lett 2020; 11:2846-2853. [PMID: 32208608 DOI: 10.1021/acs.jpclett.0c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pt-oxygen-containing species (Pt-OCS) catalysts, in which OCS (e.g., metal-oxides) are decorated on a Pt surface, possess enhanced ethanol oxidation reaction (EOR) activity and stability compared with pure Pt and are promising in practical applications of direct ethanol fuel cells. We investigate the promotion roles of Pt-OCS electrocatalysts toward the EOR via a combination of density functional theory (DFT) calculations and experiments, providing a rational design strategy for Pt-OCS catalysts. It is revealed that Pt-AuO and Pt-SnO excel in EOR activity and stability, respectively, among the DFT screening of various Pt-OCS systems, and this is confirmed by the following experiments. Moreover, an optimized Pt-AuSnO catalyst is proposed by DFT calculations, taking advantage of both Pt-AuO and Pt-SnO. The as-prepared Pt-AuSnO catalyst delivers an EOR activity that is 9.7 times higher than that of Pt and shows desired stability. These findings are expected to elucidate the mechanistic insights into Pt-OCS materials and lead to advanced EOR electrocatalysts.
Collapse
Affiliation(s)
- Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Tzu-Hsi Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Po-Cheng Chien
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Cheng-An Lin
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Chen-Wei Liu
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Sheng-Wei Lee
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kuan-Wen Wang
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
31
|
Liu X, Chen Q, Sun D, Wang Y, Dong H, Dang Y, Holmes DE. Applying potentials to conductive materials impairs High-loading anaerobic digestion performance by affecting direct interspecies electron transfer. BIORESOURCE TECHNOLOGY 2020; 297:122422. [PMID: 31767427 DOI: 10.1016/j.biortech.2019.122422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In order to illustrate the impact that application of positive or negative potential to conductive materials can have on direct interspecies electron transfer (DIET) and reactor performance under high organic loading rates, three continuous laboratory-scale reactors with carbon-cloth electrodes poised at +0.7 V, -0.7 V (vs. Ag/AgCl) and no-potential were fed high concentrations of ethanol wastewater. While exoelectrogens and methanogens that are capable of DIET were significantly enriched in poised reactors, they performed worse than the non-current control. Volatile fatty acids (VFAs) accumulated more rapidly in the positively then negatively poised reactor, but neither could withstand high-loading rates. These results demonstrate that applying potential to conductive materials had a negative effect on anaerobic digestion under high-loading conditions.
Collapse
Affiliation(s)
- Xinying Liu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Qian Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yumingzi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - He Dong
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, United States
| |
Collapse
|
32
|
Pu L, Fan H, Maheshwari V. Formation of microns long thin wire networks with a controlled spatial distribution of elements. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02365h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
By controlling the spatial distribution of elements using a simple self-assembly process, the catalytic performance can be enhanced.
Collapse
Affiliation(s)
- Long Pu
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| | - Hua Fan
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| | - Vivek Maheshwari
- Department of Chemistry
- University of Waterloo
- Waterloo
- N2L 3G1 Canada
- Waterloo Institute for Nanotechnology
| |
Collapse
|
33
|
Sachse R, Bernsmeier D, Schmack R, Häusler I, Hertwig A, Kraffert K, Nissen J, Kraehnert R. Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02285f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ordered mesoporous carbon films with high surface area, good electrical conductivity and an improved distribution of NPs with tunable composition show high electrocatalytic activity in HER.
Collapse
Affiliation(s)
- René Sachse
- Technische Universität Berlin
- Faculty II Mathematics and Natural Sciences
- Institute of Chemistry
- 10623 Berlin
- Germany
| | - Denis Bernsmeier
- Technische Universität Berlin
- Faculty II Mathematics and Natural Sciences
- Institute of Chemistry
- 10623 Berlin
- Germany
| | - Roman Schmack
- Technische Universität Berlin
- Faculty II Mathematics and Natural Sciences
- Institute of Chemistry
- 10623 Berlin
- Germany
| | - Ines Häusler
- Technische Universität Berlin
- Faculty II Mathematics and Natural Sciences
- Institute of Optics and Atomic Physics
- 10623 Berlin
- Germany
| | - Andreas Hertwig
- Federal Institute for Materials Research and Testing (BAM)
- 12203 Berlin
- Germany
| | - Katrin Kraffert
- Technische Universität Berlin
- Faculty II Mathematics and Natural Sciences
- Institute of Chemistry
- 10623 Berlin
- Germany
| | - Jörg Nissen
- Technische Universität Berlin
- ZELMI
- 10623 Berlin
- Germany
| | - Ralph Kraehnert
- Technische Universität Berlin
- Faculty II Mathematics and Natural Sciences
- Institute of Chemistry
- 10623 Berlin
- Germany
| |
Collapse
|
34
|
|
35
|
Shakibi Nia N, Guillén-Villafuerte O, Griesser C, Manning G, Kunze-Liebhäuser J, Arévalo C, Pastor E, García G. W2C-Supported PtAuSn—A Catalyst with the Earliest Ethanol Oxidation Onset Potential and the Highest Ethanol Conversion Efficiency to CO2 Known till Date. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04348] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niusha Shakibi Nia
- Institute of Physical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Olmedo Guillén-Villafuerte
- Instituto de Materiales y Nanotecnología, Departamento de Química, Universidad de La Laguna, P.O. Box 456, La Laguna, Santa Cruz de Tenerife 38200, Spain
| | - Christoph Griesser
- Institute of Physical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Gearóid Manning
- School of Chemistry, University College Dublin, Belfield Campus, Dublin 4 D04 V1W8, Ireland
| | - Julia Kunze-Liebhäuser
- Institute of Physical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Carmen Arévalo
- Instituto de Materiales y Nanotecnología, Departamento de Química, Universidad de La Laguna, P.O. Box 456, La Laguna, Santa Cruz de Tenerife 38200, Spain
| | - Elena Pastor
- Instituto de Materiales y Nanotecnología, Departamento de Química, Universidad de La Laguna, P.O. Box 456, La Laguna, Santa Cruz de Tenerife 38200, Spain
| | - Gonzalo García
- Instituto de Materiales y Nanotecnología, Departamento de Química, Universidad de La Laguna, P.O. Box 456, La Laguna, Santa Cruz de Tenerife 38200, Spain
| |
Collapse
|
36
|
Suhadolnik L, Bajec D, Žigon D, Čeh M, Likozar B. Continuous Photo‐Electro‐Catalytic Synthesis of Bio‐Based Adipic Acid with Reaction Kinetics Modeling. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luka Suhadolnik
- Jožef Stefan InstituteDepartment for Nanostructured Materials Jamova 39 SI-1000 Ljubljana Slovenia
| | - David Bajec
- National Institute of ChemistryLaboratory of Catalysis and Chemical Reaction Engineering Hajdrihova 19 SI-1000 Ljubljana Slovenia
| | - Dušan Žigon
- Jožef Stefan InstituteDepartment of Environmental Sciences Jamova 39 SI-1000 Ljubljana Slovenia
| | - Miran Čeh
- Jožef Stefan InstituteDepartment for Nanostructured Materials Jamova 39 SI-1000 Ljubljana Slovenia
| | - Blaž Likozar
- National Institute of ChemistryLaboratory of Catalysis and Chemical Reaction Engineering Hajdrihova 19 SI-1000 Ljubljana Slovenia
| |
Collapse
|
37
|
Hong Y, Kim HJ, Lee HJ, Kim J, Choi SI. Ni(OH) 2 Decorated Pt-Cu Octahedra for Ethanol Electrooxidation Reaction. Front Chem 2019; 7:608. [PMID: 31552225 PMCID: PMC6733919 DOI: 10.3389/fchem.2019.00608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Here we report the synthesis of 9 nm Ni(OH)2 decorated Pt-Cu octahedra (Ni(OH)2-PtCu) in one-pot synthesis for ethanol oxidation reaction (EOR) electrocatalysis in acidic electrolyte. To prepare Ni(OH)2-PtCu octahedra, CO gas was directly introduced in a reaction process as selective capping agents on the PtCu(111) facet. Ni(OH)2 was naturally deposited on the Pt-Cu octahedra during the synthesis. Carbon supported Ni(OH)2-PtCu (Ni(OH)2-PtCu/C) as an EOR catalyst showed enhanced CO tolerance due to the existence of oxophilic Ni(OH)2 on the surface of Pt-Cu, facilitating water dissolution to produce OH adsorption and to promote complete CO oxidation to CO2. In addition, Pt-Cu alloy composition also showed improvement of CO tolerance because of modified d-band structure of the Pt atoms, thereby weakening the binding strength of CO on the catalysts. Therefore, the Ni(OH)2-PtCu/C showed enhanced EOR activity and durability compared to the Pt-Cu octahedra and commercial Pt/C counterparts.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
38
|
Ju K, Pak S, Ri C, Ryo H, Kim KI, So SR, Ri CK, Ri SP, Nam KW, Pak KS, Qu Y. Ethanol electro-oxidation on carbon-supported Pt1Mn3 catalyst investigated by pinhole on-line electrochemical mass spectrometry. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Silva RM, Camara GA, Giz MJ. Electro-oxidation of ethanol on PtRh surfaces partially covered by Sn. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Gruzeł G, Arabasz S, Pawlyta M, Parlinska-Wojtan M. Conversion of bimetallic PtNi 3 nanopolyhedra to ternary PtNiSn nanoframes by galvanic replacement reaction. NANOSCALE 2019; 11:5355-5364. [PMID: 30848274 DOI: 10.1039/c9nr01359h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hollow multimetallic PtNiSn nanoparticles (NPs) were formed from solid Ni-core/Pt-frame NPs by the galvanic replacement reaction (GRR) of Ni by Sn. The GRR was performed by adding SnCl4·5H2O dissolved in ethylene glycol into the PtNi3 NPs containing suspension. The reaction yielded nanoframes with a hollow interior, having Pt-rich edges covered with a thin, incomplete Sn layer. They were investigated using transmission electron microscopy (TEM), energy dispersion X-ray spectroscopy (EDS) and X-ray diffraction (XRD). EDS analysis showed that the GRR rate could be modified by changing the solvent and the concentration of tin ions. Indeed, compared to water, ethylene glycol was found to facilitate the reduction of tin chloride and to affect nickel dissolution. TEM analysis revealed that the galvanic replacement of nickel and tin involves two different mechanisms. The first one consists of nickel oxidation followed by reduction of tin ions. In the second mechanism, oxidation of nickel and reduction of tin ions occur simultaneously.
Collapse
Affiliation(s)
- Grzegorz Gruzeł
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | | | | | | |
Collapse
|
41
|
El-Khatib K, Abdel Hameed R, Amin R, Fetohi AE. Core-shell structured Pt-transition metals nanoparticles supported on activated carbon for direct methanol fuel cells. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Barakat NA, Amen MT, Al-Mubaddel FS, Karim MR, Alrashed M. NiSn nanoparticle-incorporated carbon nanofibers as efficient electrocatalysts for urea oxidation and working anodes in direct urea fuel cells. J Adv Res 2019; 16:43-53. [PMID: 30899588 PMCID: PMC6412973 DOI: 10.1016/j.jare.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022] Open
Abstract
Synthesis of NiSn alloy nanoparticle-incorporated carbon nanofibers was performed by calcining electrospun mats composed of nickel acetate, tin chloride and poly(vinyl alcohol) under vacuum. The electrochemical measurements indicated that utilization of tin as a co-catalyst could strongly enhance the electrocatalytic activity if its content and calcination temperature were optimized. Typically, the nanofibers prepared from calcination of an electrospun solution containing 15 wt% SnCl2 at 700 °C have a current density almost 9-fold higher than that of pristine nickel-incorporated carbon nanofibers (77 and 9 mA/cm2, respectively) at 30 °C in a 1.0 M urea solution. Furthermore, the current density increases to 175 mA/cm2 at 55 °C for the urea oxidation reaction. Interestingly, the nanofibers prepared from a solution with 10 wt% of co-catalyst precursor show an onset potential of 175 mV (vs. Ag/AgCl) at 55 °C, making this proposed composite an adequate anode material for direct urea fuel cells. Optimization of the co-catalyst content to maximize the generated current density resulted in a Gaussian function peak at 15 wt%. However, studying the influence of the calcination temperature indicated that 850 °C was the optimum temperature because synthesizing the proposed nanofibers at 1000 °C led to a decrease in the graphite content, which dramatically decreased the catalyst activity. Overall, the study opens a new venue for the researchers to exploit tin as effective co-catalyst to enhance the electrocatalytic performance of the nickel-based nanostructures. Moreover, the proposed co-catalyst can be utilized with other functional electrocatalysts to improve their activity toward oxidation of different fuels.
Collapse
Affiliation(s)
- Nasser A.M. Barakat
- Chemical Engineering Department, Minia University, PO Box 61519, El-Minia, Egypt
| | - Mohamed T. Amen
- Bionano System Engineering Department, College of Engineering, Chonbuk National University, PO Box 54896, Jeonju, South Korea
| | - Fahad S. Al-Mubaddel
- Department of Chemical Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammad Rezual Karim
- Center for Excellence in Materials Research CEREM, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
| | - Maher Alrashed
- Department of Chemical Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
43
|
Sadeghi S, Amani M. Co-doped triel-pnicogen graphene as metal-free catalyst for CO oxidation: Role of multi-center covalency. J Mol Model 2019; 25:77. [PMID: 30806794 DOI: 10.1007/s00894-019-3960-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/07/2019] [Indexed: 11/24/2022]
Abstract
Third and fifth group atoms, named triel and pnicogen, respectively, were used for graphene doping. AlP and AlN structures were selected as co-doped graphene-based catalysts. The electronic structure and catalytic properties of binary AlN, AlP co-doped graphene were investigated through density functional theory (DFT). Results show that the AlP co-doped graphene strictly enhances the oxygen reactivity compared to AlN one. The CO oxidation on AlP and AlN co-doped graphene sheets is mainly done through Eley-Rideal mechanism as follows: CO + O2➔CO2 + Oads and CO + Oads➔ CO2. The CO oxidation reaction paths over the AlN and AlP-co-doped graphene have revealed that they can be regarded as the competent catalyst for CO oxidation in the presence of O2. Mechanistically, both AlP and AlN co-doped graphene catalysts are appropriately active in the first step while the second step is too hard to do regarding the multi-center covalency character between O2 and AlP co-doped graphene and hence its catalytic efficiency is significantly lower compared to AlN co-doped graphene sheet. Thus, the substitution of a C-C bond with Al-N is an effective way to design the graphene-based catalysts for CO oxidation.
Collapse
Affiliation(s)
- Sadegh Sadeghi
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
| | - Mitra Amani
- Chemical engineering department, Islamic Azad University, Robatkarim Branch, Robatkarim, Iran.
| |
Collapse
|
44
|
Yin HJ, Zhou JH, Zhang YW. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00689c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in shaping protocols and structure-activity relationships of noble-metal-based catalysts with well-defined nanostructures in electrochemical reactions.
Collapse
Affiliation(s)
- Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
45
|
Galvano– and Potentio–dynamic studies during ethanol electro-oxidation reaction in acid vs. alkaline media: Energy dissipation and blocking nature of potassium. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.09.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Richter JB, Eßbach C, Senkovska I, Kaskel S, Brunner E. Quantitative in situ13C NMR studies of the electro-catalytic oxidation of ethanol. Chem Commun (Camb) 2019; 55:6042-6045. [DOI: 10.1039/c9cc02660f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The newly developed pouch cells offer a sensitive method to analyse various products of electrocatalytic reactions, especially of the alcohol oxidation reaction.
Collapse
Affiliation(s)
| | - Claudia Eßbach
- Chair of Inorganic Chemistry I
- TU Dresden
- Bergstraße 66
- 01069 Dresden
- Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I
- TU Dresden
- Bergstraße 66
- 01069 Dresden
- Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I
- TU Dresden
- Bergstraße 66
- 01069 Dresden
- Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry
- TU Dresden
- Bergstraße 66
- 01069 Dresden
- Germany
| |
Collapse
|
47
|
Modeling and simulation of a direct ethanol fuel cell considering overpotential losses and variation of principal species concentration. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Gu Z, Li S, Xiong Z, Xu H, Gao F, Du Y. Rapid synthesis of platinum-ruthenium bimetallic nanoparticles dispersed on carbon support as improved electrocatalysts for ethanol oxidation. J Colloid Interface Sci 2018; 521:111-118. [DOI: 10.1016/j.jcis.2018.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 11/26/2022]
|
49
|
|
50
|
Gwebu SS, Nomngongo PN, Maxakato NW. Pt-Sn Nanoparticles Supported on Carbon Nanodots as Anode Catalysts for Alcohol Electro-oxidation in Acidic Conditions. ELECTROANAL 2018. [DOI: 10.1002/elan.201800098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sandile Surprise Gwebu
- Department of Applied Chemistry; University of Johannesburg, P.O. Box 17011; Doornfontein 2028 South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Applied Chemistry; University of Johannesburg, P.O. Box 17011; Doornfontein 2028 South Africa
| | - Nobanathi Wendy Maxakato
- Department of Applied Chemistry; University of Johannesburg, P.O. Box 17011; Doornfontein 2028 South Africa
| |
Collapse
|