1
|
Shi D, Wu W, Li X. Ultrasensitive detection of mercury(II) ions on a hybrid film of a graphene and gold nanoparticle-modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2161-2167. [PMID: 35593172 DOI: 10.1039/d2ay00413e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggravated by human and industrial activities, heavy metal pollution has become a severe problem, causing widespread concern in society, and cannot be ignored. Herein, a graphene/gold nanoparticle-hybrid (AuNPs/ERGO) was proposed and synthesized by electrochemical methods. Based on the AuNPs/ERGO hybrid, a novel electrochemical sensing platform was established and successfully applied for the selective, quantitative detection of Hg2+, taking advantage of the well-established anodic stripping voltammetry (ASV). This hybrid material not only increases the surface area and charge transfer rate but also provides more active sites for Hg deposition due to the formation of homogeneous, high density and monodispersed AuNPs on the ERGO film. The prepared AuNPs/ERGO hybrid was modified on a glassy carbon electrode (GCE) to detect Hg2+ with a linear range from 0.5 to 20 μg L-1 and a low limit of detection (LOD) of 0.06 μg L-1. The selectivity and stability of the as-prepared electrode were investigated and showed promising results. In addition, a screen-printed carbon electrode (SPCE) was also employed to verify the practical application ability of our assay with an excellent performance, which presents a bright application prospect for in situ Hg2+ detection.
Collapse
Affiliation(s)
- Dongmin Shi
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| | - Wenzhan Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| | - Xiaoyuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| |
Collapse
|
2
|
Klestova ZS, Voronina AK, Yushchenko AY, Vatlitsova OS, Dorozinsky GV, Ushenin YV, Maslov VP, Doroshenko TP, Kravchenko SA. Aspects of "antigen-antibody" interaction of chicken infectious bronchitis virus determined by surface plasmon resonance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120236. [PMID: 34358781 DOI: 10.1016/j.saa.2021.120236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Authors performed investigation on "antigen-antibody" interaction of chicken infectious bronchitis coronavirus (IBV) by a method based on the surface plasmon resonance (SPR). Presence of space-size effect related to a difference between antigen and antibody particle sizes has been theoretically grounded and experimentally proven. Herewith, the difference between responses of the SPR-sensor to specific and non-specific interactions is considerably less (up to 6.3 times) than the expected one (8 - 11 times). An impact of functionalization of sensor's sensitive element surface, as well as acidity of buffer solution on the activity of antigen-antibody interaction was studied here. The difference between sensor's responses to specific and non-specific interactions increased two-fold from 200 to 432ang sec due to this treatment. When changing the acidity of analyzed solution from pH7.3 to pH6.8, the corresponding difference between sensor's responses increased by 6.3 times from 194 up to 1235ang.sec. Thus, an impact of space-size effect on interaction between IBV antigen and specific antibody can be considerably (almost in 3 times) decreased by reducing the acidity of used buffer solution. The results of our investigation can be successfully applied to develop new methods for detection of pathogens and specific antibodies using SPR.
Collapse
Affiliation(s)
- Z S Klestova
- State Scientific-Control Institute of Biotechnology and Strains of Microorganisms, Department of Biotechnology and Quality Control of Viral Drugs, 30 Donetska Str, 03151 Kyiv, Ukraine
| | - A K Voronina
- State Scientific-Control Institute of Biotechnology and Strains of Microorganisms, Department of Biotechnology and Quality Control of Viral Drugs, 30 Donetska Str, 03151 Kyiv, Ukraine
| | - A Yu Yushchenko
- State Scientific-Control Institute of Biotechnology and Strains of Microorganisms, Department of Biotechnology and Quality Control of Viral Drugs, 30 Donetska Str, 03151 Kyiv, Ukraine
| | - O S Vatlitsova
- State Scientific-Control Institute of Biotechnology and Strains of Microorganisms, Department of Biotechnology and Quality Control of Viral Drugs, 30 Donetska Str, 03151 Kyiv, Ukraine
| | - G V Dorozinsky
- V.Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Department of Physics technological bases of sensory materials, 41 Nauki Ave, 03028 Kyiv, Ukraine
| | - Yu V Ushenin
- V.Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Department of Physics technological bases of sensory materials, 41 Nauki Ave, 03028 Kyiv, Ukraine
| | - V P Maslov
- V.Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Department of Physics technological bases of sensory materials, 41 Nauki Ave, 03028 Kyiv, Ukraine.
| | - T P Doroshenko
- V.Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Department of Physics technological bases of sensory materials, 41 Nauki Ave, 03028 Kyiv, Ukraine
| | - S A Kravchenko
- V.Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Department of Physics technological bases of sensory materials, 41 Nauki Ave, 03028 Kyiv, Ukraine
| |
Collapse
|
3
|
High Performance Zinc Oxide Nanorod-Doped Ion Imprinted Polypyrrole for the Selective Electrosensing of Mercury II Ions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10197010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A biomimetic, ion-imprinted polymer (IIP) was prepared by electropolymerization of pyrrole at the surface of gold electrodes decorated with vertically grown ZnO nanorods. The vertical growth of the nanorods was achieved via an ultrathin aryl monolayer grafted by reduction of diazonium salt precursor. Pyrrole was polymerized in the presence of L-cysteine as chelating agent and Hg2+ (template). Hg2+-imprinted polypyrrole (PPy) was also prepared on a bare gold electrode in order to compare the two methods of sensor design (Au-ZnO-IIP vs. Au-IIP). Non-imprinted PPy was prepared in the same conditions but in the absence of any Hg2+ template. The strategy combining diazonium salt modification and ZnO nanorod decoration of gold electrodes permitted us to increase considerably the specific surface area and thus improve the sensor performance. The limit of detection (LOD) of the designed sensor was ~1 pM, the lowest value ever reported in the literature for gold electrode sensors. The dissociation constants between PPy and Hg2+ were estimated at [Kd1 = (7.89 ± 3.63) mM and Kd2 = (38.10 ± 9.22) pM]. The sensitivity of the designed sensor was found to be 0.692 ± 0.034 μA.pM-1. The Au-ZnO-IIP was found to be highly selective towards Hg2+ compared to cadmium, lead and copper ions. This sensor design strategy could open up new horizons in monitoring toxic heavy metal ions in water and therefore contribute to enhancing environmental quality.
Collapse
|
4
|
Martínez-Hernández ME, Goicoechea J, Arregui FJ. Hg 2+ Optical Fiber Sensor Based on LSPR Generated by Gold Nanoparticles Embedded in LBL Nano-Assembled Coatings. SENSORS 2019; 19:s19224906. [PMID: 31717619 PMCID: PMC6891725 DOI: 10.3390/s19224906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Mercury is an important contaminant since it is accumulated in the body of living beings, and very small concentrations are very dangerous in the long term. This paper reports the fabrication of a highly sensitive fiber optic sensor using the layer-by-layer nano-assembly technique with gold nanoparticles (AuNPs). The gold nanoparticles were obtained via a water-based synthesis route that use poly acrylic acid (PAA) as stabilizing agent, in the presence of a borane dimethylamine complex (DMAB) as reducing agent, giving PAA-capped AuNPs. The sensing mechanism is based on the alteration of the Localized Surface Plasmon Resonances (LSPR) generated by AuNPs thanks to the strong chemical affinity of metallic mercury towards gold, which lead to amalgam alloys.
Collapse
Affiliation(s)
- María Elena Martínez-Hernández
- Department of Electrical, Electronic and Communication Engineering, Universidad Publica de Navarra, Edif. Los Tejos, Campus Arrosadía, 31006 Pamplona, Spain; (J.G.); (F.J.A.)
- Correspondence:
| | - Javier Goicoechea
- Department of Electrical, Electronic and Communication Engineering, Universidad Publica de Navarra, Edif. Los Tejos, Campus Arrosadía, 31006 Pamplona, Spain; (J.G.); (F.J.A.)
- Institute of Smart Cities (ISC), Universidad Publica de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
| | - Francisco J. Arregui
- Department of Electrical, Electronic and Communication Engineering, Universidad Publica de Navarra, Edif. Los Tejos, Campus Arrosadía, 31006 Pamplona, Spain; (J.G.); (F.J.A.)
- Institute of Smart Cities (ISC), Universidad Publica de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
| |
Collapse
|
5
|
Laurinavichyute VK, Nizamov S, Mirsky VM. The Role of Anion Adsorption in the Effect of Electrode Potential on Surface Plasmon Resonance Response. Chemphyschem 2017; 18:1552-1560. [PMID: 28294502 DOI: 10.1002/cphc.201601288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 11/06/2022]
Abstract
Surface plasmon resonance, being widely used in bioanalytics and biotechnology, is influenced by the electrical potential of the resonant gold layer. To evaluate the mechanism of this effect, we have studied it in solutions of various inorganic electrolytes. The magnitude of the effect decreases according to the series: KBr>KCl>KF>NaClO4 . The data were treated by using different models of the interface. A quantitative description was obtained for the model, which takes into account the local dielectric function of gold being affected by the free electron charge, diffuse ionic layer near the gold/water interface, and specific adsorption of halides to the gold surface with partial charge transfer. Taking into account that most biological experiments are performed in chloride-containing solutions, detailed analysis of the model at these conditions was performed. The results indicate that the chloride adsorption is the main mechanism for the influence of potential on the surface plasmon resonance. The dependencies of surface concentration and residual charge of chloride on the applied potential were determined.
Collapse
Affiliation(s)
| | - Shavkat Nizamov
- Institute of Biotechnology, Department of Nanobiotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Vladimir M Mirsky
- Institute of Biotechnology, Department of Nanobiotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| |
Collapse
|
6
|
Wang JG, Fossey JS, Li M, Xie T, Long YT. Real-Time Plasmonic Monitoring of Single Gold Amalgam Nanoalloy Electrochemical Formation and Stripping. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8305-8314. [PMID: 26942394 DOI: 10.1021/acsami.6b01029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Direct electrodeposition of mercury onto gold nanorods on an ITO substrate, without reducing agents, is reported. The growth of single gold amalgam nanoalloy particles and subsequent stripping was monitored in real-time monitoring by plasmonic effects and single-nanoparticle dark-field spectroelectrochemistry techniques. Time-dependent scattering spectral information conferred insight into the growth and stripping mechanism of a single nanoalloy particle. Four critical stages were observed: First, rapid deposition of Hg atoms onto Au nanorods; second, slow diffusion of Hg atoms into Au nanorods; third, prompt stripping of Hg atoms from Au nanorods; fourth, moderate diffusion from the inner core of Au nanorods. Under high Hg(2+) concentrations, homogeneous spherical gold amalgam nanoalloys were obtained. These results demonstrate that the morphology and composition of individual gold amalgam nanoalloys can be precisely regulated electrochemically. Moreover, gold amalgam nanoalloys with intriguing optical properties, such as modulated plasmonic lifetimes and quality factor Q, could be obtained. This may offer opportunities to extend applications in photovoltaic energy conversion and chemical sensing.
Collapse
Affiliation(s)
- Jun-Gang Wang
- Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - John S Fossey
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham, West Midlands B15 2TT, U.K
| | - Meng Li
- Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Tao Xie
- Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Bin Y, Fu Q, Hou Y, Xiang J. Real-time composition and deposition depth profile of metal alloys using electrochemical surface plasmon resonance. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wang G, Kim TW, Lee T. Electrical transport characteristics through molecular layers. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12702k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Centrifugation: an efficient technique for preconcentration in anodic stripping voltammetric analysis of mercury using a gold film electrode. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0246-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Use of rotating Au-thin film electrode for the differential pulse voltammetric study of Hg2+ complexation. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Panta YM, Liu J, Cheney MA, Joo SW, Qian S. Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection. J Colloid Interface Sci 2009; 333:485-90. [DOI: 10.1016/j.jcis.2009.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
|
12
|
Spectroscopy at Electrochemical Interfaces. SURF INTERFACE ANAL 2009. [DOI: 10.1007/978-3-540-49829-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|