Zhou T, Winkelmann G, Dai ZY, Hider RC. Design of clinically useful macromolecular iron chelators.
ACTA ACUST UNITED AC 2011;
63:893-903. [PMID:
21635254 DOI:
10.1111/j.2042-7158.2011.01291.x]
[Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES
In recent years, macromolecular iron chelators have received increasing attention as human therapeutic agents. The objectives of this article are: one, to discuss the factors which should be considered when designing iron binding macromolecules as human therapeutic agents, and two, to report recent achievements in the design and synthesis of appropriate macromolecular chelators that have resulted in the production of a number of agents with therapeutic potential.
KEY FINDINGS
Macromolecular drugs exhibit unique pharmaceutical properties that are fundamentally different from their traditional small-molecule counterparts. By virtue of their high-molecular-weight characteristics, many are confined to extracellular compartments, for instance, the serum and the gastrointestinal tract. In addition, they have potential for topical administration. Consequently, these macromolecular drugs are free from many of the toxic effects that are associated with their low-molecular-weight analogues.
SUMMARY
The design and synthesis of macromolecular iron chelators provides a novel aspect to chelation therapy. 3-Hydroxypyridin-4-one hexadentate-based macromolecular chelators have considerable potential for the development of new treatments for iron overload and for topical treatment of infection.
Collapse