1
|
Chino M, La Gatta S, Leone L, De Fenza M, Lombardi A, Pavone V, Maglio O. Dye Decolorization by a Miniaturized Peroxidase Fe-MimochromeVI*a. Int J Mol Sci 2023; 24:11070. [PMID: 37446248 DOI: 10.3390/ijms241311070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Oxidases and peroxidases have found application in the field of chlorine-free organic dye degradation in the paper, toothpaste, and detergent industries. Nevertheless, their widespread use is somehow hindered because of their cost, availability, and batch-to-batch reproducibility. Here, we report the catalytic proficiency of a miniaturized synthetic peroxidase, Fe-Mimochrome VI*a, in the decolorization of four organic dyes, as representatives of either the heterocyclic or triarylmethane class of dyes. Fe-Mimochrome VI*a performed over 130 turnovers in less than five minutes in an aqueous buffer at a neutral pH under mild conditions.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
2
|
Fabrication and Catalytic Characterization of Laccase-Loaded Calcium-Alginate Beads for Enhanced Degradation of Dye-Contaminated Aqueous Solutions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03765-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Assaifan AK, Al Habis N, Ahmad I, Alshehri NA, Alharbi HF. Scaling-up medical technologies using flexographic printing. Talanta 2020; 219:121236. [PMID: 32887127 DOI: 10.1016/j.talanta.2020.121236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 11/17/2022]
Abstract
Medical technologies, such as point-of-care devices and biological and chemical assays which rely on functional materials deposited on top of substrates, are in great demand due to an increase in the prevalence of diseases worldwide. A significant number of these medical technologies are still in their infancy with respect to commercialization because of the high cost, material and complexity of the conventionally available fabrication techniques. As a result, medical technologies, in broad terms, require low cost and mass production fabrication methods in order to overcome the commercialization challenges. Recently, researchers have explored the flexographic printing technique which is widely employed for food packaging and newspaper production. This technique has proved cost-effective, facile, rapid and industrially compatible fabrication technique of functional materials for various applications. In this review, we provide an account of the attempts of flexographic printing made to scale up functional materials on surfaces for biomedical applications. Firstly, we offer justification for demanding high-throughput fabrication techniques. We then present the facile working principle of the flexographic printing and its use in different medical applications, for example chronic disease monitoring devices, colorimetric sensors, electrochemical sensors, assays and drugs. Finally, we discuss challenges of the fabrication technique. The main purpose of this review is to give insights into the usefulness of flexographic printing to the health care industry.
Collapse
Affiliation(s)
| | - Nuha Al Habis
- Center of Excellence for Research in Engineering Materials, King Saud University, Riyadh, Saudi Arabia.
| | - Iftikhar Ahmad
- Center of Excellence for Research in Engineering Materials, King Saud University, Riyadh, Saudi Arabia
| | - Naif Ahmed Alshehri
- College of Science Physics Department at Albaha University, Albaha, Saudi Arabia
| | - Hamad F Alharbi
- Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia; Center of Excellence for Research in Engineering Materials, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Cui M, Ren J, Wen X, Li N, Xing Y, Zhang C, Han Y, Ji X. Electrochemical Detection of Superoxide Anion Released by Living Cells by Manganese(III) Tetraphenyl Porphine as Superoxide Dismutase Mimic. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-0006-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Liu F, Lin Z, Jin Q, Wu Q, Yang C, Chen HJ, Cao Z, Lin DA, Zhou L, Hang T, He G, Xu Y, Xia W, Tao J, Xie X. Protection of Nanostructures-Integrated Microneedle Biosensor Using Dissolvable Polymer Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4809-4819. [PMID: 30628778 DOI: 10.1021/acsami.8b18981] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Real-time transdermal biosensing provides a direct route to quantify biomarkers or physiological signals of local tissues. Although microneedles (MNs) present a mini-invasive transdermal technique, integration of MNs with advanced nanostructures to enhance sensing functionalities has rarely been achieved. This is largely due to the fact that nanostructures present on MNs surface could be easily destructed due to friction during skin insertion. In this work, we reported a dissolvable polymer-coating technique to protect nanostructures-integrated MNs from mechanical destruction during MNs insertion. After penetration into the skin, the polymer could readily dissolve by interstitial fluids so that the superficial nanostructures on MNs could be re-exposed for sensing purpose. To demonstrate this technique, metallic and resin MNs decorated with vertical ZnO nanowires (vNWs) were employed as an example. Dissolvable poly(vinyl pyrrolidone) was spray-coated on the vNW-MNs surface as a protective layer, which effectively protected the superficial ZnO NWs when MNs penetrated the skin. Transdermal biosensing of H2O2 biomarker in skin tissue using the polymer-protecting MNs sensor was demonstrated both ex vivo and in vivo. The results indicated that polymer coating successfully preserved the sensing functionalities of the MNs sensor after inserting into the skin, whereas the sensitivity of the MN sensor without a coating protection was significantly compromised by 3-folds. This work provided unique opportunities of protecting functional nanomodulus on MNs surface for minimally invasive transdermal biosensing.
Collapse
Affiliation(s)
- Fanmao Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Zhihong Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Quanchang Jin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Qianni Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center , Sun Yat-sen University , 510060 Guangzhou , China
| | - Chengduan Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Zihan Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Di-An Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Lingfei Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Tian Hang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Yonghang Xu
- School of Materials Science and Energy Engineering , Foshan University , 528000 Foshan , China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
| | - Xi Xie
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital , Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| |
Collapse
|
6
|
Jiang Z, Zhao J, Qin L, Wang J, Zhao M. Fabrication of Ordered ZnO/Au Micro/nanostructured Pore Array for the Analysis of Hydrogen Peroxide. CHEM LETT 2018. [DOI: 10.1246/cl.171203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhengyan Jiang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, P. R. China
| | - Jianwei Zhao
- School of Physical Science and Technology, Southwest University, Chongqing 400715, P. R. China
| | - Lirong Qin
- School of Physical Science and Technology, Southwest University, Chongqing 400715, P. R. China
| | - Junxia Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, P. R. China
| | - Min Zhao
- School of Physical Science and Technology, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Sharifalhoseini Z, Entezari MH, Jalal R. Direct and indirect sonication affect differently the microstructure and the morphology of ZnO nanoparticles: Optical behavior and its antibacterial activity. ULTRASONICS SONOCHEMISTRY 2015; 27:466-473. [PMID: 26186868 DOI: 10.1016/j.ultsonch.2015.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/07/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
In the present study, the sono-synthesis of ZnO nanoparticles (NPs) was performed by simple, low-cost, and the environmentally friendly method. The synthesis of zinc oxide as an antibacterial agent was performed by an ultrasonic bath (low intensity) for the indirect sonication and a horn system (high intensity) for the direct sonication. The samples synthesized by these two kinds of sonication were compared with each other. Crystallographic structures and the morphologies of the resultant powders were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns showed that both ZnO samples were crystallized in their pure phase. The TEM images confirmed that the morphologies of the products were completely different from each other. Based on the obtained analysis, the probable growth mechanisms were proposed for crystallization of both samples. The antibacterial activity of the synthesized species was evaluated by the colony count method against Escherichia coli O157:H7. Moreover, the optical behavior of the samples was studied by UV-vis spectroscopy and the variation of the ZnO band gap was compared.
Collapse
Affiliation(s)
- Zahra Sharifalhoseini
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779, Mashhad, Iran
| | - Mohammad H Entezari
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779, Mashhad, Iran; Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779, Mashhad, Iran.
| | - Razieh Jalal
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779, Mashhad, Iran
| |
Collapse
|
8
|
Lee SW, Cheon SA, Kim MI, Park TJ. Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects. J Nanobiotechnology 2015; 13:54. [PMID: 26337651 PMCID: PMC4559159 DOI: 10.1186/s12951-015-0118-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/25/2015] [Indexed: 02/01/2023] Open
Abstract
Organic-inorganic hybrid nanoflowers, a newly developed class of flower-like hybrid nanoparticles, have received much attention due to their simple synthesis, high efficiency, and enzyme stabilizing ability. This article covers, in detail, the types, structural features, mechanism of formation, and bio-related applications of hybrid nanoflowers. The five major types of hybrid nanoflowers are discussed, i.e., copper-protein, calcium-protein, and manganese-protein hybrid nanoflowers, copper-DNA hybrid nanoflowers, and capsular hybrid nanoflowers. The structural features of these nanoflowers, such as size, shape, and protein ratio generally determine their applications. Thus, the specific characteristics of hybrid nanoflowers are summarized in this review. The interfacial mechanism of nanoflower formation is examined in three steps: first, combination of metal ion and organic matter; second, formation of petals; third, growth of nanoflowers. The explanations provided herein can be utilized in the development of innovative approaches for the synthesis of hybrid nanoflowers for prospective development of a plethora of hybrid nanoflowers. The future prospects of hybrid nanoflowers in the biotechnology industry, medicine, sensing, and catalysis are also discussed.
Collapse
Affiliation(s)
- Seung Woo Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Seon Ah Cheon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea.
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Juarez-Moreno K, Díaz de León JN, Zepeda TA, Vazquez-Duhalt R, Fuentes S. Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Fan Z, Lin Q, Gong P, Liu B, Wang J, Yang S. A new enzymatic immobilization carrier based on graphene capsule for hydrogen peroxide biosensors. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Cheng C, Chang KC. Development of immobilized cellulase through functionalized gold nano-particles for glucose production by continuous hydrolysis of waste bamboo chopsticks. Enzyme Microb Technol 2013; 53:444-51. [DOI: 10.1016/j.enzmictec.2013.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 11/25/2022]
|
12
|
|
13
|
Liu Y, Du Y, Li CM. Direct Electrochemistry Based Biosensors and Biofuel Cells Enabled with Nanostructured Materials. ELECTROANAL 2013. [DOI: 10.1002/elan.201200555] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare RN. Functional protein-organic/inorganic hybrid nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:320-8. [DOI: 10.1002/wnan.1210] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
The use of mixed self-assembled monolayers as a strategy to improve the efficiency of carbamate detection in environmental monitoring. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Calcium alginate beads encapsulated PMMA-g-CS nano-particles for α-chymotrypsin immobilization. Carbohydr Polym 2012; 92:2095-102. [PMID: 23399263 DOI: 10.1016/j.carbpol.2012.11.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/21/2022]
Abstract
Chitosan grafted with polymethyl methacrylate (PMMA-g-CS) was prepared via a free-radicals polymerization technique as a carrier for enzyme immobilization. α-Chymotrypsin (CT), as an enzyme model in this study, was immobilized onto the prepared PMMA-g-CS via covalent bonding. Calcium alginate (CA) beads were developed for encapsulating PMMA-g-CS-CT to produce PMMA-g-CS-CT/CA composite beads. Morphology and size of PMMA-g-CS particles were investigated by TEM and found to be in the nanoscale. The structure and surface morphology of the beads before and after immobilization process were characterized by FT-IR and SEM, respectively. Both the bound CT content and relative activity of immobilized enzyme were measured. A higher retained activity (about 97.7%) obtained for the immobilized CT at pH 9 for 24 h. The results indicated that immobilized CT maintained excellent performance even after 25 reuses and retained 75% from its original activity after 60 days of storage at 25 °C.
Collapse
|
17
|
Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP. Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal Chim Acta 2012; 737:1-21. [PMID: 22769031 DOI: 10.1016/j.aca.2012.05.048] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 01/31/2023]
Abstract
Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review highlights recent advances in various approaches towards synthesis of ZnO nanostructures and thin films and their applications in biosensor technology.
Collapse
Affiliation(s)
- Sunil K Arya
- Bioelectronics Program, Institute of Microelectronics, Singapore Science Park II, Singapore 117685, Singapore.
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Ashtari K, Khajeh K, Fasihi J, Ashtari P, Ramazani A, Vali H. Silica-encapsulated magnetic nanoparticles: Enzyme immobilization and cytotoxic study. Int J Biol Macromol 2012; 50:1063-9. [DOI: 10.1016/j.ijbiomac.2011.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
20
|
Chen HC, Hua MY, Liu YC, Yang HW, Tsai RY. Preparation of water-dispersible poly[aniline-co-sodium N-(1-one-butyric acid) aniline]–zinc oxide nanocomposite for utilization in an electrochemical sensor. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30775h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Hahn YB, Ahmad R, Tripathy N. Chemical and biological sensors based on metal oxide nanostructures. Chem Commun (Camb) 2012; 48:10369-85. [DOI: 10.1039/c2cc34706g] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Liu C, Xu J, Wu Z. Direct electron transfer and electrochemical study of hemoglobin immobilized in ZnO hollow spheres. Bioprocess Biosyst Eng 2011; 34:931-8. [PMID: 21505813 DOI: 10.1007/s00449-011-0544-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/05/2011] [Indexed: 11/28/2022]
Abstract
ZnO hollow spheres were firstly prepared. A new type of amperometric hydrogen peroxide biosensor was fabricated by entrapping Hemoglobin (Hb) through the ZnO hollow spheres (ZHS) nanoparticles. The composition morphology and size were studied by transmission electron microscopy. The surface topography of the prepared films was imaged by atomic force microscope (AFM). Several techniques, including UV-vis absorption spectroscopy, cyclic voltammetry, chronoamperometry were employed to characterize the performance of the biosensor. The results indicated that the ZHS nanoparticles had enhanced the performance of the hydrogen peroxide sensors. The electrochemical parameters of Hb in the ZHS were calculated by the results of the electron-transfer coefficient (α) and the apparent heterogeneous electron-transfer rate constant K (s) as 0.5 and 3.1 s(-1), respectively. The resulting biosensors showed a wide linear range from 2.1 × 10(-6) to 5.18 × 10(-3) M, with a low detection limit of 7.0 × 10(-7) M (S/N = 3) under optimized experimental conditions. The results demonstrated that the ZHS matrix may improve the protein loading with the retention of bioactivity and greatly promote the direct electron transfer, which can be attributed to its unique morphology, high specific surface area, and biocompatibility. The biosensor obtained from this study possesses high sensitivity, good reproducibility, and long-term stability.
Collapse
Affiliation(s)
- Changhua Liu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400700, People's Republic of China.
| | | | | |
Collapse
|
23
|
Xu J, Liu C, Wu Z. Acerate ZnO whiskers and sodium alginate films: preparation and application in bioelectrochemistry of hemoglobin. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1334-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
A novel platform of hemoglobin on core–shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.01.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
|
26
|
Green synthesis of gold nanoparticles by the marine microalgaTetraselmis suecica. Biotechnol Appl Biochem 2010; 57:71-5. [DOI: 10.1042/ba20100196] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Liu X, Luo L, Ding Y, Xu Y, Li F. Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on γ-Al2O3 nanoparticles/chitosan film-modified electrode. J Solid State Electrochem 2010. [DOI: 10.1007/s10008-010-1120-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Liu J, Li Y, Huang X, Zhu Z. Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor. NANOSCALE RESEARCH LETTERS 2010; 5:1177-1181. [PMID: 20596358 PMCID: PMC2894215 DOI: 10.1007/s11671-010-9622-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM-1 cm-2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis-Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.
Collapse
Affiliation(s)
- Jinping Liu
- Department of Physics, Central China Normal University, Wuhan, 430079, People's Republic of China.
| | | | | | | |
Collapse
|
29
|
Qiu JD, Peng HP, Liang RP, Xia XH. Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens Bioelectron 2010; 25:1447-53. [DOI: 10.1016/j.bios.2009.10.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/08/2009] [Accepted: 10/28/2009] [Indexed: 11/30/2022]
|
30
|
Zhao Z, Lei W, Zhang X, Wang B, Jiang H. ZnO-based amperometric enzyme biosensors. SENSORS (BASEL, SWITZERLAND) 2010; 10:1216-31. [PMID: 22205864 PMCID: PMC3244010 DOI: 10.3390/s100201216] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 11/16/2022]
Abstract
Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol), respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization) and biosensor performances.
Collapse
Affiliation(s)
- Zhiwei Zhao
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; E-Mails: (W.L.); (X.B.Z.); (B.P.W.)
| | - Wei Lei
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; E-Mails: (W.L.); (X.B.Z.); (B.P.W.)
| | - Xiaobing Zhang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; E-Mails: (W.L.); (X.B.Z.); (B.P.W.)
| | - Baoping Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China; E-Mails: (W.L.); (X.B.Z.); (B.P.W.)
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
31
|
Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes. Biosens Bioelectron 2009; 25:383-7. [DOI: 10.1016/j.bios.2009.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
|
32
|
Feng X, Liu Y, Kong Q, Ye J, Chen X, Hu J, Chen Z. Direct electrochemistry of myoglobin immobilized on chitosan-wrapped rod-constructed ZnO microspheres and its application to hydrogen peroxide biosensing. J Solid State Electrochem 2009. [DOI: 10.1007/s10008-009-0883-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|