1
|
Hao Z, Ma Y, Chen Y, Fu P, Wang P. Non-Noble Metal Catalysts in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193331. [PMID: 36234459 PMCID: PMC9565230 DOI: 10.3390/nano12193331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 05/02/2023]
Abstract
The oxygen reduction reaction (ORR) is one of the crucial energy conversion reactions in proton exchange membrane fuel cells (PEMFCs). Low price and remarkable catalyst performance are very important for the cathode ORR of PEMFCs. Among the various explored ORR catalysts, non-noble metals (transition metal: Fe, Co, Mn, etc.) and N co-doped C (M-N-C) ORR catalysts have drawn increasing attention due to the abundance of these resources and their low price. In this paper, the recent advances of single-atom catalysts (SACs) and double-atom catalysts (DACs) in the cathode ORR of PEMFCs is reviewed systematically, with emphasis on the synthesis methods and ORR performance of the catalysts. Finally, challenges and prospects are provided for further advancing non-noble metal catalysts in PEMFCs.
Collapse
Affiliation(s)
- Zhuo Hao
- School of Automobile, Chang’an University, Xi’an 710064, China
| | - Yangyang Ma
- College of Automotive Engineering, Jilin University, Changchun 130012, China
| | - Yisong Chen
- School of Automobile, Chang’an University, Xi’an 710064, China
- Correspondence: (Y.C.); (P.F.)
| | - Pei Fu
- School of Automobile, Chang’an University, Xi’an 710064, China
- Correspondence: (Y.C.); (P.F.)
| | - Pengyu Wang
- College of Automotive Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Bandarenka AS, Ventosa E, Maljusch A, Masa J, Schuhmann W. Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials. Analyst 2015; 139:1274-91. [PMID: 24418971 DOI: 10.1039/c3an01647a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development and optimisation of materials that promote electrochemical reactions have recently attracted attention mainly due to the challenge of sustainable provision of renewable energy in the future. The need for better understanding and control of electrode-electrolyte interfaces where these reactions take place, however, implies the continuous need for development of efficient analytical techniques and methodologies capable of providing detailed information about the performance of electrocatalysts, especially in situ, under real operational conditions of electrochemical systems. During the past decade, significant efforts in the fields of electrocatalysis and (electro)analytical chemistry have resulted in the evolution of new powerful methods and approaches providing ever deeper and unique insight into complex and dynamic catalytic systems. The combination of various electrochemical and non-electrochemical methods as well as the application of quantum chemistry calculations has become a viable modern approach in the field. The focus of this critical review is primarily set on discussion of the most recent cutting-edge achievements in the development of analytical techniques and methodologies designed to evaluate three key constituents of the performance of electrocatalysts, namely, activity, selectivity and stability. Possible directions and future challenges in the design and elaboration of analytical methods for electrocatalytic research are outlined.
Collapse
Affiliation(s)
- Aliaksandr S Bandarenka
- Center for Electrochemical Sciences - CES, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
3
|
Zhao X, Chen S, Fang Z, Ding J, Sang W, Wang Y, Zhao J, Peng Z, Zeng J. Octahedral Pd@Pt1.8Ni Core–Shell Nanocrystals with Ultrathin PtNi Alloy Shells as Active Catalysts for Oxygen Reduction Reaction. J Am Chem Soc 2015; 137:2804-7. [DOI: 10.1021/ja511596c] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xu Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sheng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhicheng Fang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jia Ding
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Sang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Youcheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jin Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenmeng Peng
- Department
of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, Center of Advanced Nanocatalysis, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
4
|
Tsai HC, Hsieh YC, Yu TH, Lee YJ, Wu YH, Merinov BV, Wu PW, Chen SY, Adzic RR, Goddard WA. DFT Study of Oxygen Reduction Reaction on Os/Pt Core–Shell Catalysts Validated by Electrochemical Experiment. ACS Catal 2015. [DOI: 10.1021/cs501020a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ho-Cheng Tsai
- Materials
and Process Simulation Center (M/C 139-74), California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Yu-Chi Hsieh
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan ROC
| | - Ted H. Yu
- Materials
and Process Simulation Center (M/C 139-74), California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Department
of Chemical Engineering, California State University, Long Beach, California 90840, United States
| | - Yi-Juei Lee
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan ROC
| | - Yue-Han Wu
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan ROC
| | - Boris V. Merinov
- Materials
and Process Simulation Center (M/C 139-74), California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Pu-Wei Wu
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan ROC
| | - San-Yuan Chen
- Department
of Materials Science and Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan ROC
| | - Radoslav R. Adzic
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - William A. Goddard
- Materials
and Process Simulation Center (M/C 139-74), California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Nikkuni FR, Ticianelli EA, Dubau L, Chatenet M. Identical-Location Transmission Electron Microscopy Study of Pt/C and Pt–Co/C Nanostructured Electrocatalyst Aging: Effects of Morphological and Compositional Changes on the Oxygen Reduction Reaction Activity. Electrocatalysis (N Y) 2013. [DOI: 10.1007/s12678-013-0126-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Prieto MJ, Rodrigues Filho UP, Landers R, Tremiliosi-Filho G. The ethanol electrooxidation at Pt layers deposited on polycrystalline Au. Phys Chem Chem Phys 2012; 14:599-606. [DOI: 10.1039/c1cp22390a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|