1
|
Han SH, Rho J, Lee S, Kim M, Kim SI, Park S, Jang W, Lee CH, Chang BY, Chung TD. In Situ Real-Time Monitoring of ITO Film under a Chemical Etching Process Using Fourier Transform Electrochemical Impedance Spectroscopy. Anal Chem 2020; 92:10504-10511. [PMID: 32489093 DOI: 10.1021/acs.analchem.0c01294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a novel approach to the in situ real-time investigation of an ITO electrode during the wet etching process, step-excitation Fourier-transform electrochemical impedance spectroscopy (FT-EIS) was implemented. The equivalent circuit parameters (e.g., Rct, Cdl) continuously obtained by the FT-EIS measurements during the entire etching process showed an electrode activation at the initial period as well as the completion of etching. The FT-EIS results were further validated by cyclic voltammograms and impedance measurements of partially etched ITO films using ferri- and ferrocyanide solution in combination with FESEM imaging, EDS, XRD analyses, and COMSOL simulation. We also demonstrated that this technique can be further utilized to obtain intact interdigitated array (IDA) electrodes in a reproducible manner, which is generally considered to be quite tricky due to delicacy of the pattern. Given that the FT-EIS allows for instantaneous snapshots of the electrode at every moment, this work may hold promise for in situ real-time examination of structural, electrokinetic, or mass transfer-related information on electrochemical systems undergoing constantly changing, transient processes including etching, which would be impossible with conventional electroanalytical techniques.
Collapse
Affiliation(s)
- Seok Hee Han
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jihun Rho
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sunmi Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea
| | - Moonjoo Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sung Il Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sangmee Park
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea
| | - Woohyuk Jang
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chang Heon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Byoung-Yong Chang
- Department of Chemistry, Pukyong University, Busan 48513, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.,Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea.,Advanced Institute of Convergence Technology, Suwon-Si, Gyeonggi-do 16229, South Korea
| |
Collapse
|
3
|
Ko Y, Singh IB, Park SM. A Novel Method for Corrosion Reaction Analysis by Fourier Transform Electrochemical Impedance Spectroscopy: Corrosion of 9Cr-1 Mo Ferritic Steel in 0.050 M H2SO4. ELECTROANAL 2013. [DOI: 10.1002/elan.201200539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Yang CJ, Ko Y, Park SM. Fourier transform electrochemical impedance spectroscopic studies on anodic reaction of lead. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|