1
|
Tu YJ, Peng ST. Influence of surface nanostructure-induced innermost ion structuring on capacitance of carbon/ionic liquid double layers. Phys Chem Chem Phys 2024; 26:5932-5946. [PMID: 38299635 DOI: 10.1039/d3cp05617a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Ionic liquids have drawn great interest as electrolytes for energy storage applications in which they form characteristic electrical double layers at electrode interfaces. For ionic liquids at carbon electrode interfaces, their double layers are subject to nanoscale structuring of the electrode surface, involving altered ion structure and interactions that significantly influence the double layer capacitance. In this regard, we investigate the modulation of ionic liquid double layers by electrode surface roughness and the resulting effects on the ion structure, interaction, and capacitance. We performed fixed voltage molecular dynamics simulations to compute the differential capacitance profiles for the ionic liquids [BMIm+][TFSI-] and [BMIm+][FSI-] at model carbon electrode interfaces with the surface channel width at subnanometer and nanometer scales. We find that both [BMIm+][TFSI-] and [BMIm+][FSI-] exhibit enhanced differential capacitance for the electrode surface with a subnanometer channel width relative to the flat graphene surface, but the most pronounced enhancements for these two ionic liquids unexpectedly appear at different applied potential regimes. For [BMIm+][TFSI-], the nanostructured electrode shows significant enhancement of capacitance at high positive potential. For [BMIm+][FSI-], on the other hand, this enhancement is small at positive polarization but noticeable at low negative potential. We demonstrate that differences in these capacitance trends is due to differences in ion correlation that arise from a steric constraint of nanostructured electrode surface on the voltage-mediated restructuring of ions closest to the electrode interface. For example, the TFSI- and FSI- anions tend to structure with their charged and nonpolar groups in contact with the positive electrode surface when the constraint on these close-contact anions is relaxed. This anion structuring largely retains the cation association near the nanostructured electrode, resulting in only a slight increase in capacitance at positive polarization. Our simulations highlight the sensitive dependence of the innermost ion structure on the electrode surface nanostructure and applied voltage and the resulting influence on ion correlation and capacitance of ionic liquid double layers.
Collapse
Affiliation(s)
- Yi-Jung Tu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, 54561, Taiwan.
| | - Sheng-Ting Peng
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, 54561, Taiwan.
| |
Collapse
|
2
|
The adsorption of 4,4ʹ-bipyridine at a Cd(0001)|ionic liquid interface – The descent into disorder. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
3
|
The review of advances in interfacial electrochemistry in Estonia: electrochemical double layer and adsorption studies for the development of electrochemical devices. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe electrochemistry nowadays has many faces and challenges. Although the focus has shifted from fundamental electrochemistry to applied electrochemistry, one needs to acknowledge that it is impossible to develop and design novel green energy transition devices without a comprehensive understanding of the electrochemical processes at the electrode and electrolyte interface that define the performance mechanisms. The review gives an overview of the systematic research in the field of electrochemistry in Estonia which reflects on the excellent collaboration between fundamental and applied electrochemistry.
Collapse
|
4
|
Order beyond a monolayer: The story of two self-assembled 4,4′-bipyridine layers on the Sb(111) | ionic liquid interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
The Influence of Ionic Liquids Adsorption on the Electronic and Optical Properties of Phosphorene and Arsenene with Different Phases: A Computational Study. Molecules 2022; 27:molecules27082518. [PMID: 35458716 PMCID: PMC9027769 DOI: 10.3390/molecules27082518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/27/2023] Open
Abstract
Density functional theory (DFT) calculations have been performed to investigate the interfacial interactions of ionic liquids (ILs) on the α- and β-phases of phosphorene (P) and arsenene (As). Nine representative ILs based on the combinations of 1-ethyl-3-methylimidazolium ([EMIM]+), N-methylpyridinium ([MPI]+), and trimethylamine ([TMA]+) cations paired to tetrafluoroborate ([BF4]−), trifluoromethanesulfonate ([TFO]−), and chloridion (Cl−) anions were used as adsorbates on the 2D P and As nanosheets with different phases to explore the effect of IL adsorption on the electronic and optical properties of 2D materials. The calculated structure, adsorption energy, and charge transfer suggest that the interaction between ILs and P and As nanosheets is dominated by noncovalent forces, and the most stable adsorption structures are characterized by the simultaneous interaction of the cation and anion with the surface, irrespective of the types of ILs and surfaces. Furthermore, the IL adsorption leads to the larger change in the electronic properties of β-phase P and As than those of their α-phase counterparts, which demonstrates that the adsorption properties are not only related to the chemical elements, but also closely related to the phase structures. The present results provide insight into the further applications of ILs and phosphorene (arsenene) hybrid materials.
Collapse
|
6
|
Uralcan B, Uralcan IB. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16800-16808. [PMID: 35377144 DOI: 10.1021/acsami.1c24088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We explore the effect of solvation and micropore structure on the energy storage performance of electrical double layer capacitors using constant potential molecular dynamics simulations of realistically modeled nanoporous carbon electrodes and ionic liquid/organic solvent mixtures. We show that the time-dependent charging profiles of electrodes with larger pores reach the plateau regime faster, while the charging time has a nonmonotonic dependence on ion concentration, mirroring the composition dependence of bulk electrolyte conductivity. When the average pore size of the electrode is similar to or slightly larger than the size of a solvated ion, the solvation enhances ion electrosorption into nanopores by disrupting anion-cation coordination and decreasing the barrier to counterion penetration while blocking the co-ions. In these systems, areal capacitance exhibits a significant nonmonotonic dependence on ion concentration, in which capacitance increases with the introduction of solvent in the concentrated regime followed by a decrease with further dilution. This gives rise to a maximum in capacitance at intermediate dilution levels. When pores are significantly larger than solvated ions, capacitance maximum weakens and eventually disappears. These findings provide novel insights on the combined effect of electrolyte composition and electrode pore size on the charging kinetics and equilibrium behavior of realistically modeled electrical double layer capacitors. Generalization of the approach developed here can facilitate the rational optimization of material properties for electrical double layer capacitor applications.
Collapse
Affiliation(s)
- Betul Uralcan
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Irem Beyza Uralcan
- Department of Physics, Bogazici University, Bebek 34342, Istanbul, Turkey
| |
Collapse
|
7
|
|
8
|
The electrochemical behaviour of protic quaternary amine based room-temperature ionic liquid N2210(OTf) at negatively and positively polarized micro-mesoporous carbon electrode investigated by in situ X-ray photoelectron spectroscopy, in situ mass-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Gu C, Yin L, Li S, Zhang B, Liu X, Yan T. Differential capacitance of ionic liquid and mixture with organic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Voroshylova IV, Ers H, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro MNDS. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid-Au Interface. J Phys Chem Lett 2020; 11:10408-10413. [PMID: 33253582 DOI: 10.1021/acs.jpclett.0c03212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this Letter, we report the first observation of the capacitance-potential hysteresis at the ionic liquid | electrode interface in atomistic molecular dynamics simulations. While modeling the differential capacitance dependence on the potential scan direction, we detected two long-living types of interfacial structure for the BMImPF6 ionic liquid at specific charge densities of the gold Au(111) surface. These structures differ in how counterions overscreen the surface charge. The high barrier for the transition from one structure to another slows down the interfacial restructuring process and leads to the marked capacitance-potential hysteresis.
Collapse
Affiliation(s)
- Iuliia V Voroshylova
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Heigo Ers
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - Piret Pikma
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Voroshylova IV, Lembinen M, Ers H, Mišin M, Koverga VA, Pereira CM, Ivaništšev VB, Cordeiro MND. On the role of the surface charge plane position at Au(hkl)–BMImPF6 interfaces. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte. ENERGIES 2019. [DOI: 10.3390/en12163132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to synthesize value-added chemicals directly from CO2 will be an important technological advancement for future generations. Using solar energy to drive thermodynamically uphill electrochemical reactions allows for near carbon-neutral processes that can convert CO2 into energy-rich carbon-based fuels. Here, we report on the use of inexpensive CuSn alloys to convert CO2 into CO in an acetonitrile/imidazolium-based electrolyte. Synergistic interactions between the CuSn catalyst and the imidazolium cation enables the electrocatalytic conversion of CO2 into CO at −1.65 V versus the standard calomel electrode (SCE). This catalyst system is characterized by overpotentials for CO2 reduction that are similar to more expensive Au- and Ag-based catalysts, and also shows that the efficacy of the CO2 reduction reaction can be tuned by varying the CuSn ratio.
Collapse
|
13
|
Zhang Q, Liu X, Yin L, Chen P, Wang Y, Yan T. Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Pajkossy T, Müller C, Jacob T. The metal–ionic liquid interface as characterized by impedance spectroscopy and in situ scanning tunneling microscopy. Phys Chem Chem Phys 2018; 20:21241-21250. [DOI: 10.1039/c8cp02074d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrochemical measurements including impedance spectroscopy and in situ scanning tunneling microscopy were performed to study the interface between solid electrodes and ionic liquids. We could reveal that the double layer rearrangement processes are not instantaneous, but that the ions can form ordered clusters at the interface.
Collapse
Affiliation(s)
- Tamás Pajkossy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
- Hungary
| | - Claus Müller
- Institute of Electrochemistry
- Ulm University
- Ulm 89081
- Germany
| | - Timo Jacob
- Institute of Electrochemistry
- Ulm University
- Ulm 89081
- Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage
| |
Collapse
|
15
|
Ruzanov A, Lembinen M, Jakovits P, Srirama SN, Voroshylova IV, Cordeiro MNDS, Pereira CM, Rossmeisl J, Ivaništšev VB. On the thickness of the double layer in ionic liquids. Phys Chem Chem Phys 2018; 20:10275-10285. [DOI: 10.1039/c7cp07939g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Au(111)|BF4−interface model in which BF4−reorients and spontaneously dissociates at surface coverageθ= 1/3.
Collapse
Affiliation(s)
- Anton Ruzanov
- Institute of Chemistry, University of Tartu
- 50411 Tartu
- Estonia
| | - Meeri Lembinen
- Institute of Physics, University of Tartu
- 50411 Tartu
- Estonia
| | - Pelle Jakovits
- Mobile & Cloud Computing Laboratory, Institute of Computer Science, University of Tartu
- 50409 Tartu
- Estonia
| | - Satish N. Srirama
- Mobile & Cloud Computing Laboratory, Institute of Computer Science, University of Tartu
- 50409 Tartu
- Estonia
| | - Iuliia V. Voroshylova
- Departamento de Química e Bioquímica, LAQV@REQUIMTE, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre
- Porto
- Portugal
- Departamento de Química e Bioquímica, CIQ(UP), Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre
- Porto
| | - M. Natália D. S. Cordeiro
- Departamento de Química e Bioquímica, LAQV@REQUIMTE, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre
- Porto
- Portugal
| | - Carlos M. Pereira
- Departamento de Química e Bioquímica, CIQ(UP), Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre
- Porto
- Portugal
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, København
- Denmark
| | | |
Collapse
|
16
|
Specific adsorption from an ionic liquid: impedance study of iodide ion adsorption from a pure halide ionic liquid at bismuth single crystal planes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
|
18
|
Uralcan B, Aksay IA, Debenedetti PG, Limmer DT. Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions. J Phys Chem Lett 2016; 7:2333-2338. [PMID: 27259040 DOI: 10.1021/acs.jpclett.6b00859] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.
Collapse
Affiliation(s)
- Betul Uralcan
- Department of Chemical and Biological Engineering and ‡Princeton Center for Theoretical Science, Princeton University , Princeton New Jersey 08544, United States
| | - Ilhan A Aksay
- Department of Chemical and Biological Engineering and ‡Princeton Center for Theoretical Science, Princeton University , Princeton New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering and ‡Princeton Center for Theoretical Science, Princeton University , Princeton New Jersey 08544, United States
| | - David T Limmer
- Department of Chemical and Biological Engineering and ‡Princeton Center for Theoretical Science, Princeton University , Princeton New Jersey 08544, United States
| |
Collapse
|
19
|
Kruusma J, Tõnisoo A, Pärna R, Nõmmiste E, Tallo I, Romann T, Lust E. Influence of the negative potential of molybdenum carbide derived carbon electrode on the in situ synchrotron radiation activated X-ray photoelectron spectra of 1-ethyl-3-methylimidazolium tetrafluoroborate. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Lage-Estebanez I, Ruzanov A, García de la Vega JM, Fedorov MV, Ivaništšev VB. Self-interaction error in DFT-based modelling of ionic liquids. Phys Chem Chem Phys 2016; 18:2175-82. [PMID: 26690957 DOI: 10.1039/c5cp05922d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modern computer simulations of potential green solvents of the future, involving the room temperature ionic liquids, heavily rely on density functional theory (DFT). In order to verify the appropriateness of the common DFT methods, we have investigated the effect of the self-interaction error (SIE) on the results of DFT calculations for 24 ionic pairs and 48 ionic associates. The magnitude of the SIE is up to 40 kJ mol(-1) depending on the anion choice. Most strongly the SIE influences the calculation results of ionic associates that contain halide anions. For these associates, the range-separated density functionals suppress the SIE; for other cases, the revPBE density functional with dispersion correction and triple-ζ Slater-type basis is suitable for computationally inexpensive and reasonably accurate DFT calculations.
Collapse
Affiliation(s)
- Isabel Lage-Estebanez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | | | | | | | |
Collapse
|
21
|
Anderson E, Grozovski V, Siinor L, Siimenson C, Lust E. Comparative in situ STM, cyclic voltammetry and impedance spectroscopy study of Bi(111) | 1-ethyl-3-methylimidazolium tetrafluoroborate interface. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Bozym DJ, Uralcan B, Limmer DT, Pope MA, Szamreta NJ, Debenedetti PG, Aksay IA. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents. J Phys Chem Lett 2015; 6:2644-2648. [PMID: 26266747 DOI: 10.1021/acs.jpclett.5b00899] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.
Collapse
Affiliation(s)
- David J Bozym
- †Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Betül Uralcan
- †Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - David T Limmer
- ‡Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08540, United States
| | - Michael A Pope
- †Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas J Szamreta
- †Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- †Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ilhan A Aksay
- †Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
The electrochemical characteristics of the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium iodide. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Affiliation(s)
- Maxim V Fedorov
- Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde , John Anderson Bldg, 107 Rottenrow, Glasgow, G4 0NG United Kingdom
| | | |
Collapse
|
25
|
Grozovski V, Ivaništšev V, Kasuk H, Romann T, Lust E. Balance of the interfacial interactions of 4,4′-bipyridine at Bi(111) surface. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Influence of the electrode potential and in situ STM scanning conditions on the phase boundary structure of the single crystal Bi(111)|1-butyl-4-methylpyridinium tetrafluoroborate interface. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Arfin T, Yadav N. Impedance characteristics and electrical double-layer capacitance of composite polystyrene–cobalt–arsenate membrane. J IND ENG CHEM 2013. [DOI: 10.1016/j.jiec.2012.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Influence of temperature on the electrochemical characteristics of Bi(111)|ionic liquid interface. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|