1
|
Li Q, Zhu G, Liu Z, Xu J. Molecular dynamics simulation studies on the ionic liquid N-butylpyridinium tetrafluoroborate on the gold surface. Heliyon 2024; 10:e32710. [PMID: 38975103 PMCID: PMC11225740 DOI: 10.1016/j.heliyon.2024.e32710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The study of solid/liquid interface is of great significance for understanding various phenomena such as the nanostructure of the interface, liquid wetting, crystal growth and nucleation. In this work, the nanostructure of the pyridinium ionic liquid [BPy]BF4 on different gold surfaces was studied by molecular dynamics simulation. The results indicate that the density of the ionic liquids near the gold surface is significantly higher than that in the bulk phase. Cation's tail (the alkyl chain) orients parallel to the surface under all studied conditions. Cation's head (the pyridine ring) orientation varies from parallel to perpendicular, which depends on the temperature and corrugation of the Au(hkl) surface. Interestingly, analysis of simulated mass and number densities revealed that surface corrugation randomizes the cations packing. On smooth Au(111) and Au(100) surfaces, parallel and perpendicular orientations are well distinguished for densely packed cations. While on corrugated Au(110), cations' packing density and order are decreased. Overall, this study explores the adsorption effect of the gold surface on ionic liquids, providing some valuable insights into their behavior on the solid/liquid interface.
Collapse
Affiliation(s)
- Qiang Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
- Faculty of Engineering, Anhui Sanlian University, Hefei, 230601, China
| | - Guanglai Zhu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Zhicong Liu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Jianqiang Xu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
2
|
Siinor L, Ers H, Pikma P. Another Piece of the Ionic Liquid's Puzzle: Adsorption of Cl - Ions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2722-2729. [PMID: 38379917 PMCID: PMC10877642 DOI: 10.1021/acs.jpcc.3c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Classical electrochemical and microscopy methods were used to characterize the interfacial processes of the adsorption of chloride ions from ionic liquids at the Bi(111) single crystal electrode. The mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium chloride was electrochemically characterized by using cyclic voltammetry and electrochemical impedance spectroscopy. In situ scanning tunneling microscopy images showed the formation of superstructures at the electrode's surface over an extended period of time. The specific adsorption of chloride ions reaches an equilibrium state in a more viscous ionic liquid medium slower than in aqueous and organic solvents. Capacitance values increase considerably (also depending on alternative current frequency) at the potential region, where the specific adsorption of chloride ions with partial charge transfer occurs.
Collapse
Affiliation(s)
- Liis Siinor
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Heigo Ers
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Piret Pikma
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
3
|
Zhao J, Gorbatovski G, Oll O, Anderson E, Lust E. Influence of water on the electrochemical characteristics and nanostructure of Bi(hkl)│Ionic liquid interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
The Influence of Ionic Liquids Adsorption on the Electronic and Optical Properties of Phosphorene and Arsenene with Different Phases: A Computational Study. Molecules 2022; 27:molecules27082518. [PMID: 35458716 PMCID: PMC9027769 DOI: 10.3390/molecules27082518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/27/2023] Open
Abstract
Density functional theory (DFT) calculations have been performed to investigate the interfacial interactions of ionic liquids (ILs) on the α- and β-phases of phosphorene (P) and arsenene (As). Nine representative ILs based on the combinations of 1-ethyl-3-methylimidazolium ([EMIM]+), N-methylpyridinium ([MPI]+), and trimethylamine ([TMA]+) cations paired to tetrafluoroborate ([BF4]−), trifluoromethanesulfonate ([TFO]−), and chloridion (Cl−) anions were used as adsorbates on the 2D P and As nanosheets with different phases to explore the effect of IL adsorption on the electronic and optical properties of 2D materials. The calculated structure, adsorption energy, and charge transfer suggest that the interaction between ILs and P and As nanosheets is dominated by noncovalent forces, and the most stable adsorption structures are characterized by the simultaneous interaction of the cation and anion with the surface, irrespective of the types of ILs and surfaces. Furthermore, the IL adsorption leads to the larger change in the electronic properties of β-phase P and As than those of their α-phase counterparts, which demonstrates that the adsorption properties are not only related to the chemical elements, but also closely related to the phase structures. The present results provide insight into the further applications of ILs and phosphorene (arsenene) hybrid materials.
Collapse
|
5
|
Ma K, Qin B, Wang X. Understanding the Impedance of CNOs-Graphene hybrid electrode through both experimental and simulated electrochemical impedance spectrum. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Kislenko SA, Moroz YO, Karu K, Ivaništšev VB, Fedorov MV. Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418050187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Zhang Q, Liu X, Yin L, Chen P, Wang Y, Yan T. Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Pajkossy T, Müller C, Jacob T. The metal–ionic liquid interface as characterized by impedance spectroscopy and in situ scanning tunneling microscopy. Phys Chem Chem Phys 2018; 20:21241-21250. [DOI: 10.1039/c8cp02074d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrochemical measurements including impedance spectroscopy and in situ scanning tunneling microscopy were performed to study the interface between solid electrodes and ionic liquids. We could reveal that the double layer rearrangement processes are not instantaneous, but that the ions can form ordered clusters at the interface.
Collapse
Affiliation(s)
- Tamás Pajkossy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
- Hungary
| | - Claus Müller
- Institute of Electrochemistry
- Ulm University
- Ulm 89081
- Germany
| | - Timo Jacob
- Institute of Electrochemistry
- Ulm University
- Ulm 89081
- Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage
| |
Collapse
|
10
|
Anderson E, Grozovski V, Siinor L, Siimenson C, Lust E. Comparative in situ STM, cyclic voltammetry and impedance spectroscopy study of Bi(111) | 1-ethyl-3-methylimidazolium tetrafluoroborate interface. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Přibyl M, Slouka Z. Electrochemical characteristics of ideal polarizable interfaces with limited number of charge carriers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052404. [PMID: 26651709 DOI: 10.1103/physreve.92.052404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 06/05/2023]
Abstract
Recent progress in material chemistry and surface engineering has led to emergence of new electrode materials with unique physical and electrochemical properties. Here, we introduce a physical model describing charging of ideal polarizable electrode-electrolyte interface where the electrode is characterized by a limited capacity to store charge. The analytical model treats the electrode and electrolyte phases as independent nonlinear capacitors that are eventually coupled through the condition of equality of the total stored electrical charge opposite in sign. Gouy-Chapman and condensed layer theories applied to a general 1:n valent electrolyte are used to predict dependencies of differential capacitance of the electrolyte phase and surface concentration of the electrical charge on the applied potential. The model of the nonlinear capacitor for the electrode phase is described by a theory of electron donors and acceptors present in conductive solids as a result of thermal fluctuations. Both the differential capacitance and the surface concentration of the electrical charge in the electrode are evaluated as functions of the applied potential and related to the capacity of the electrode phase to accumulate charge and its ability to form electron donors and acceptors. The knowledge of capacitive properties of both phases allows to predict electrochemical characteristics of ideal polarizable interfaces, e.g., current responses in linear sweep voltammetry. The coupled model also shows significant potential drops in the electrode comparable to those in the electrolyte phase for materials with low charge carrier concentrations.
Collapse
Affiliation(s)
- Michal Přibyl
- University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Praha 6, Czech Republic
| | - Zdeněk Slouka
- University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Praha 6, Czech Republic
| |
Collapse
|
12
|
Anderson E, Grozovski V, Siinor L, Siimenson C, Lust E. In situ STM studies of Bi(111)|1-ethyl-3-methylimidazolium tetrafluoroborate+1-ethyl-3-methylimidazolium iodide interface. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
The electrochemical characteristics of the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium iodide. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|