1
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Aman Mohammadi M, Dakhili S, Mirza Alizadeh A, Kooki S, Hassanzadazar H, Alizadeh-Sani M, McClements DJ. New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2601-2617. [PMID: 36123813 DOI: 10.1080/10408398.2022.2124506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Packaging plays a critical role in determining the quality, safety, and shelf-life of many food products. There have been several innovations in the development of more effective food packaging materials recently. Polymer nanofibers are finding increasing attention as additives in packaging materials because of their ability to control their pore size, surface energy, barrier properties, antimicrobial activity, and mechanical strength. Electrospinning is a widely used processing method for fabricating nanofibers from food grade polymers. This review describes recent advances in the development of electrospun nanofibers for application in active and smart packaging materials. Moreover, it highlights the impact of these nanofibers on the physicochemical properties of packaging materials, as well as the application of nanofiber-loaded packaging materials to foods, such as dairy, meat, fruit, and vegetable products.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food safety and hygiene, Department of Environmental Health Engineering, School of public health, Tehran University of medical sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Approaches to Preceramic Polymer Fiber Fabrication and On-Demand Applications. MATERIALS 2022; 15:ma15134546. [PMID: 35806670 PMCID: PMC9267150 DOI: 10.3390/ma15134546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The demand for lightweight, high-modulus, and temperature-resistant materials for aerospace and other high-temperature applications has contributed to the development of ceramic fibers that exhibit most of the favorable properties of monolithic ceramics. This review demonstrates preceramic-based polymer fiber spinning and fiber classifications. We discuss different types of fiber spinning and the advantages of each. Tuning the preceramic polymer chemical properties, molar mass, functional chemistry influences, and incorporation with fillers are thoroughly investigated. Further, we present the applications of preceramic-based polymer fibers in different fields including aerospace, biomedical, and sensor applications. This concise review summarizes recent developments in preceramic fiber chemistry and essential applications.
Collapse
|
4
|
Liu K, Wang X, Luo B, Wang C, Hou P, Dong H, Li A, Zhao C. Enzyme-Free Electrochemical Sensors for in situ Quantification of Reducing Sugars Based on Carboxylated Graphene-Carboxylated Multiwalled Carbon Nanotubes-Gold Nanoparticle-Modified Electrode. FRONTIERS IN PLANT SCIENCE 2022; 13:872190. [PMID: 35574138 PMCID: PMC9098227 DOI: 10.3389/fpls.2022.872190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The reducing sugars of plants, including glucose, fructose, arabinose, galactose, xylose, and mannose, are not only the energy source of plants, but also have the messenger function of hormones in signal transduction. Moreover, they also determine the quality and flavor of agricultural products. Therefore, the in situ quantification of reducing sugars in plants or agriculture products is very important in precision agriculture. However, the upper detection limit of the currently developed sugar sensor is not high enough for in situ detection. In this study, an enzyme-free electrochemical sensor for in situ detection of reducing sugars was developed. Three-dimensional composite materials based on carboxylated graphene-carboxylated multi-walled carbon nanotubes attaching with gold nanoparticles (COOH-GR-COOH-MWNT-AuNPs) were formed and applied for the non-enzymatic determination of glucose, fructose, arabinose, mannose, xylose, and galactose. It was demonstrated that the COOH-GR-COOH-MWNT-AuNP-modified electrode exhibited a good catalysis behavior to these reducing sugars due to the synergistic effect of the COOH-GR, COOH-MWNT, and AuNPs. The detection range of the sensor for glucose, fructose, arabinose, mannose, xylose, and galactose is 5-80, 2-20, 2-50, 5-60, 2-40, and 5-40 mM, respectively. To our knowledge, the upper detection limit of our enzyme-free sugar sensor is the highest compared to previous studies, which is more suitable for in situ detection of sugars in agricultural products and plants. In addition, this sensor is simple and portable, with good reproducibility and accuracy; it will have broad practical application value in precision agriculture.
Collapse
Affiliation(s)
- Ke Liu
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, China
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Xiaodong Wang
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, China
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Peichen Hou
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Aixue Li
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, China
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunjiang Zhao
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, China
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Moreira LFPP, Buffon E, de Sá AC, Stradiotto NR. Fructose determination in fruit juices using an electrosynthesized molecularly imprinted polymer on reduced graphene oxide modified electrode. Food Chem 2021; 352:129430. [PMID: 33691211 DOI: 10.1016/j.foodchem.2021.129430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 01/10/2023]
Abstract
The present work reports the development of a novel electrochemical sensor for the selective detection of fructose. The sensor was developed through electropolymerization of a molecularly imprinted polymer film on a reduced graphene oxide modified electrode. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, atomic force microscopy and RAMAN spectroscopy. Through the application of the modified electrode, the recognition of fructose molecules occurred in a concentration range of 1.0 × 10-14 to 1.0 × 10-11 mol L-1, under a Langmuir adsorption isothermal model. The sensitivity and limits of detection and quantification obtained for the sensor were 9.9 × 107 A L mol-1, 3.2 × 10-15 mol L-1 and 1.1 × 10-14 mol L-1, respectively. The analytical method used for the detection of fructose presented good reproducibility, stability and accuracy, and was successfully applied for the quantification of this sugar in orange, apple and grape juices.
Collapse
Affiliation(s)
- Luiz Felipe Pompeu Prado Moreira
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Edervaldo Buffon
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil.
| | - Acelino Cardoso de Sá
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
6
|
Abstract
3D hierarchical graphitic carbon nanowalls encapsulating cobalt nanoparticles HPC-Co were prepared in high yield from solid-state pyrolysis of cobalt 2,2′-bipyridine chloride complex. Annealing of HPC-Co in air gave HPC-CoO, which consists of a mixture of crystallite Co3O4 nanospheres and nanorods bursting out of mesoporous carbon. Both nanocomposites were fully characterized using SEM, TEM, BET, and powder X-ray diffraction. The elemental composition of both nanocomposites examined using SEM elemental mapping and TEM elemental mapping supports the successful doping of nitrogen. The powder X-ray diffraction studies supported the formation of hexagonal cobalt in HPC-Co, and cubic crystalline Co3O4 with cubic cobalt in HPC-CoO. HPC-Co and HPC-CoO can be used as a modified carbon electrode in cyclic voltammetry experiments for the detection of fructose with limit of detection LOD 0.5 mM. However, the single-frequency impedimetric method has a wider dynamic range of 8.0–53.0 mM and a sensitivity of 24.87 Ω mM−1 for the electrode modified with HPC-Co and 8.0–87.6 mM and a sensitivity of 1.988 Ω mM−1 for the electrode modified with HPC-CoO. The LOD values are 3 and 4 mM, respectively. The effect of interference increases in the following order: ascorbic acid, ethanol, urea, and glucose. A simple method was used with negligible interference from glucose to measure the percentage of fructose in a corn syrup sample with an HPC-CoO electrode. A specific capacitance of 47.0 F/g with 76.6% retentivity was achieved for HPC-Co and 28.2 F/g with 87.9% for HPC-CoO for 3000 charge–discharge cycles. Thus, (1) has better sensitivity and specific capacitance than (2), because (1) has a higher surface area and less agglomerated cobalt nanoparticles than (2).
Collapse
|
7
|
Dias JA, Andrade MAS, Santos HLS, Morelli MR, Mascaro LH. Lanthanum‐Based Perovskites for Catalytic Oxygen Evolution Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.202000451] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jeferson A. Dias
- Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCerUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Marcos A. S. Andrade
- Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIECUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Hugo L. S. Santos
- Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIECUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Márcio R. Morelli
- Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCerUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| | - Lucia H. Mascaro
- Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIECUniversidade Federal de São Carlos Rod. Washington Luís, km 235 São Carlos/SP Brazil 13565-905
| |
Collapse
|
8
|
Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Hu J, Shi Z, Su C, Lu B, Shao Z, Huang H. Anchoring perovskite LaMnO3 nanoparticles on biomass−derived N, P co−doped porous carbon for efficient oxygen reduction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: A novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell. Talanta 2018; 178:788-795. [DOI: 10.1016/j.talanta.2017.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022]
|
11
|
Song L, Zhu Y, Yang Z, Wang C, Lu X. Oxidase-mimicking activity of perovskite LaMnO3+δ nanofibers and their application for colorimetric sensing. J Mater Chem B 2018; 6:5931-5939. [DOI: 10.1039/c8tb01706a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excellent oxidase-like mimics based on the ABX3-type perovskite structure and the corresponding sensitive colorimetric detection of l-cysteine have been developed.
Collapse
Affiliation(s)
- Lifei Song
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yun Zhu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zezhou Yang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
12
|
Esfahani H, Jose R, Ramakrishna S. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1238. [PMID: 29077074 PMCID: PMC5706185 DOI: 10.3390/ma10111238] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.
Collapse
Affiliation(s)
- Hamid Esfahani
- Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695, Iran.
| | - Rajan Jose
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Kuantan, Malaysia.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
13
|
Zhang J, Mei Q, Ding Y, Guo K, Yang X, Zhao J. Ordered Mesoporous NiCo 2O 4 Nanospheres as a Novel Electrocatalyst Platform for 1-Naphthol and 2-Naphthol Individual Sensing Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29771-29781. [PMID: 28806051 DOI: 10.1021/acsami.7b08497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The novel ordered mesoporous NiCo2O4 (meso-NiCo2O4) nanospheres were synthesized by the nanocasting strategy followed by a calcination process for 2-naphthol (2-NAP) and 1-naphthol (1-NAP) individual sensing application. The as-obtained meso-NiCo2O4 material possesses mesoporous structure in spinel crystalline type with a larger specific surface area than other structures. The meso-NiCo2O4-modified carbon paste electrode exhibited excellent electrocatalytic performance for NAP detection by amperometry measurement. The fabricated sensor of 2-NAP and 1-NAP has a wide linear detection range (0.02-300 and 0.02-20 μM) with high sensitivity (1.822 and 1.510 μA μM-1 cm-2) and low limit of detection (0.007 and 0.007 μM), respectively. In addition, the NAP sensors possess excellent reproducibility, stability, and selectivity.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- School of Materials Science and Engineering, Shanghai University , Shanghai 200444, People's Republic of China
| | - Qianwen Mei
- Department of Chemistry, College of Sciences, Shanghai University , Shanghai 200444, People's Republic of China
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University , Shanghai 200444, People's Republic of China
| | - Kai Guo
- School of Materials Science and Engineering, Shanghai University , Shanghai 200444, People's Republic of China
| | - Xinxin Yang
- School of Materials Science and Engineering, Shanghai University , Shanghai 200444, People's Republic of China
| | - Jingtai Zhao
- School of Materials Science and Engineering, Shanghai University , Shanghai 200444, People's Republic of China
- State Key Laboratory of Advanced Special Steel, Shanghai University , Shanghai 200444, People's Republic of China
| |
Collapse
|
14
|
Jin J, Zheng G, Ge Y, Deng S, Liu W, Hui G. A non-enzyme electrochemical qualitative and quantitative analyzing method for glucose, D-fructose, and sucrose utilizing Cu foam material. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.194] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Gökçeören AT, Kaplan E, Arslanoğlu Y. Electrochemical and morphological analysis on novel phthalocyanine grafted conductive polymeric nanofibers. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|