1
|
Tian Q, Jing L, Wang W, Ye X, Chai X, Zhang X, Hu Q, Yang H, He C. Hydrogen Peroxide Electrosynthesis via Selective Oxygen Reduction Reactions Through Interfacial Reaction Microenvironment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414490. [PMID: 39610213 DOI: 10.1002/adma.202414490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a compelling alternative for decentralized and on-site H2O2 production compared to the conventional anthraquinone process. To advance this electrosynthesis system, there is growing interest in optimizing the interfacial reaction microenvironment to boost electrocatalytic performance. This review consolidates recent advancements in reaction microenvironment engineering for the selective electrocatalytic conversion of O2 to H2O2. Starting with fundamental insights into interfacial electrocatalytic mechanisms, an overview of various strategies for constructing the favorable local reaction environment, including adjusting electrode wettability, enhancing mesoscale mass transfer, elevating local pH, incorporating electrolyte additives, and employing pulsed electrocatalysis techniques is provided. Alongside these regulation strategies, the corresponding analyses and technical remarks are also presented. Finally, a summary and outlook on critical challenges, suggesting future research directions to inspire microenvironment engineering and accelerate the practical application of H2O2 electrosynthesis is delivered.
Collapse
Affiliation(s)
- Qiang Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xieshu Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
2
|
Kasuk KA, Nerut J, Grozovski V, Lust E, Kucernak A. Design and Impact: Navigating the Electrochemical Characterization Methods for Supported Catalysts. ACS Catal 2024; 14:11949-11966. [PMID: 39169910 PMCID: PMC11334114 DOI: 10.1021/acscatal.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
This review will investigate the impact of electrochemical characterization method design choices on intrinsic catalyst activity measurements by predominantly using the oxygen reduction reaction (ORR) on supported catalysts as a model reaction. The wider use of hydrogen for transportation or electrical grid stabilization requires improvements in proton exchange membrane fuel cell (PEMFC) performance. One of the areas for improvement is the (ORR) catalyst efficiency and durability. Research and development of the traditional platinum-based catalysts have commonly been performed using rotating disk electrodes (RDE), rotating ring disk electrodes (RRDE), and membrane electrode assemblies (MEAs). However, the mass transport conditions of RDE and RRDE limit their usefulness in characterizing supported catalysts at high current densities, and MEA characterizations can be complex, lengthy, and costly. Ultramicroelectrode with a catalyst-filled cavity addresses some of these problems, but with limited success. Due to the properties discussed in this review, the recent floating electrode (FE) and the gas diffusion electrode (GDE) methods offer additional capabilities in the electrochemical characterization process. With the FE technique, the intrinsic activity of catalysts for ORR can be investigated, leading to a better understanding of the ORR mechanism through more reliable experimental data from application-relevant high-mass transport conditions. The GDEs are helpful bridging tools between RDE and MEA experiments, simplifying the fuel cell and electrolyzer manufacturing and operating optimization process.
Collapse
Affiliation(s)
- Karl-Ander Kasuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jaak Nerut
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Vitali Grozovski
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Enn Lust
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Anthony Kucernak
- Department
of Chemistry, Imperial College London, 80 Wood Lane, W12 7TA London, United Kingdom
| |
Collapse
|
3
|
Deng Z, Choi SJ, Li G, Wang X. Advancing H 2O 2 electrosynthesis: enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities. Chem Soc Rev 2024; 53:8137-8181. [PMID: 39021095 DOI: 10.1039/d4cs00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly desired chemical with a wide range of applications. Recent advancements in H2O2 synthesis center on the electrochemical reduction of oxygen, an environmentally friendly approach that facilitates on-site production. To successfully implement practical-scale, highly efficient electrosynthesis of H2O2, it is critical to meticulously explore both the design of catalytic materials and the engineering of other components of the electrochemical system, as they hold equal importance in this process. Development of promising electrocatalysts with outstanding selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while well-configured electrolyzers determine the practical implementation of large-scale H2O2 production. In this review, we systematically summarize fundamental mechanisms and recent achievements in H2O2 electrosynthesis, including electrocatalyst design, electrode optimization, electrolyte engineering, reactor exploration, potential applications, and integrated systems, with an emphasis on active site identification and microenvironment regulation. This review also proposes new insights into the existing challenges and opportunities within this rapidly evolving field, together with perspectives on future development of H2O2 electrosynthesis and its industrial-scale applications.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Seung Joon Choi
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
4
|
Kato M, Fujibayashi N, Abe D, Matsubara N, Yasuda S, Yagi I. Impact of Heterometallic Cooperativity of Iron and Copper Active Sites on Electrocatalytic Oxygen Reduction Kinetics. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Masaru Kato
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | | | | | | | - Satoshi Yasuda
- Research Group for Nanoscale Structure and Function of Advanced Materials, Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Ichizo Yagi
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
NAGASAWA K, MATSUURA I, KURODA Y, MITSUSHIMA S. A Novel Evaluation Method of Powder Electrocatalyst for Gas Evolution Reaction. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Issei MATSUURA
- Graduate School of Engineering Science, Yokohama National University
| | | | | |
Collapse
|
6
|
Silva CD, Corradini PG, Mascaro LH, Lemos S, Pereira EC. Using a multiway chemometric tool in the evaluation of methanol electro-oxidation mechanism. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Sarapuu A, Hussain S, Kasikov A, Pollet BG, Tammeveski K. Electroreduction of oxygen on Nafion®-coated thin platinum films in acid media. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
|
9
|
Sulfate-induced electrochemical instability in the transpassive region during the electrooxidation of Na2S on Pt. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Nishikawa H, Yano H, Inukai J, Tryk DA, Iiyama A, Uchida H. Effects of Sulfate on the Oxygen Reduction Reaction Activity on Stabilized Pt Skin/PtCo Alloy Catalysts from 30 to 80 °C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13558-13564. [PMID: 30378419 DOI: 10.1021/acs.langmuir.8b02945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of the concentration of H2SO4 ([H2SO4]), which is the major decomposition product of polymer electrolyte membranes during the operation of fuel cells, on the performance of stabilized Pt skin/PtCo alloy nanocatalysts supported on high-surface-area carbon (PtxAL-PtCo/C) were investigated. Kinetically controlled activities for the oxygen reduction reaction (ORR) and the H2O2 yields ( P(H2O2)) on the PtxAL-PtCo/C were examined based on hydrodynamic voltammograms in O2-saturated 0.1 M HClO4 + X M H2SO4 ( X = 0 to 5 × 10-2) by use of the channel flow double electrode method at temperatures between 30 and 80 °C. At X ≤ 10-6 (1 μM) and all temperatures examined, the apparent ORR rate constants kapp@0.85 V (per unit electrochemically active surface area) on PtxAL-PtCo/C at 0.85 V vs the reversible hydrogen electrode (RHE) were nearly identical with those in sulfate-free 0.1 M HClO4 and were at least twice as high as those on a commercial Pt/C catalyst (c-Pt/C). The values of kapp@0.85 V on both PtxAL-PtCo/C and c-Pt/C decreased linearly with log[H2SO4] in the concentration range 10-6 < X ≤ 5 × 10-2. The detrimental effect by H2SO4 was less pronounced on PtxAL-PtCo/C than on c-Pt/C at high temperatures; the kapp@0.85 V value at X = 5 × 10-2 on the former at 80 °C was maintained as high as 87%, whereas that of the latter was 66% (34% loss). The values of peroxide production percentage P(H2O2) on PtxAL-PtCo/C at 80 °C were nearly constant (ca. 0.22% at 0.76 V vs RHE) up to X = 5 × 10-2. These superior characteristics are ascribed to weakened adsorption of sulfate on the Pt skin surface, supported by DFT calculations, which provides the great advantage of robustness in the presence of impurities, maintaining active sites for the ORR during the PEFC operation.
Collapse
Affiliation(s)
| | - Hiroshi Yano
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Junji Inukai
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Donald A Tryk
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Akihiro Iiyama
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Hiroyuki Uchida
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| |
Collapse
|
11
|
An M, Du C, Du L, Sun Y, Wang Y, Chen C, Han G, Yin G, Gao Y. Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Long Z, Li Y, Deng G, Liu C, Ge J, Ma S, Xing W. Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC. Anal Chem 2017; 89:6309-6313. [PMID: 28537722 DOI: 10.1021/acs.analchem.7b01507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO4) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O2, and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.
Collapse
Affiliation(s)
- Zhi Long
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,Shandong Provincial Key Laboratory of Fluorine Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, Shandong, China
| | - Yankai Li
- Shandong Provincial Key Laboratory of Fluorine Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, Shandong, China
| | - Guangrong Deng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,Graduate School of the Chinese Academy of Sciences , Beijing 100039, China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry , 5625 Renmin Street, Changchun 130022, Jilin China
| | - Junjie Ge
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry , 5625 Renmin Street, Changchun 130022, Jilin China
| | - Shuhua Ma
- Shandong Provincial Key Laboratory of Fluorine Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, Shandong, China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China.,Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry , 5625 Renmin Street, Changchun 130022, Jilin China
| |
Collapse
|
13
|
UCHIDA H. Research and Development of Highly Active and Durable Electrocatalysts Based on Multilateral Analyses of Fuel Cell Reactions. ELECTROCHEMISTRY 2017. [DOI: 10.5796/electrochemistry.85.526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|