1
|
Li SN, Zhang J, Liu YQ, Zhou KP, Jiang XY, Yu JG. Cobalt vanadate intertwined in carboxylated multiple-walled carbon nanotubes for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Talanta 2025; 282:127038. [PMID: 39406089 DOI: 10.1016/j.talanta.2024.127038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
Low-cost transition metal vanadate-based electrochemical sensors have attracted a lot of attention recently. A cobalt vanadate and carboxylated multi-walled carbon nanotube composite (CoV/MWCNTs-COOH) was prepared by an ultrasonic-assisted assembly method. The uniform and dense MWCNTs-COOH attached to the surface of CoV not only combines the large surface area and superior conductivity of MWCNTs-COOH with the excellent electrochemical activity of CoV, but also enhances the redox reaction between CoV/MWCNTs-COOH composite and the analyte through synergistic effect of hydrogen bonding and electrostatic interaction. The electrochemical behaviors of CoV/MWCNTs-COOH composite modified glassy carbon electrode (CoV/MWCNTs-COOH/GCE) were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA) and uric acid (UA) on CoV/MWCNTs-COOH/GCE possesses good peak current signals with well-defined peak potentials. The linear ranges of AA, DA, and UA at CoV/MWCNTs-COOH/GCE are 1.0-100.0 μM, and the limits of detection (LODs; S/N = 3) are 0.4 μM, 0.03 μM, and 0.1 μM, respectively. The practicality of the designed sensor was further confirmed by the good recoveries obtained in the simultaneous measurement of actual samples including fetal bovine serum, human serum, urine, and Vitamin C tablets. Overall, the developed electrochemical sensor shows potential therapeutic applications for simultaneous determination of AA, DA and UA in biological fluids.
Collapse
Affiliation(s)
- Shuang-Ning Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jing Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yue-Qin Liu
- School of Life Science, Yan'an University, Shanxi, Yan'an, 716000, China.
| | - Kang-Ping Zhou
- Xinning County People's Hospital, Shaoyang, Hunan, 422700, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
2
|
Zhu A, Wang T, Jiang Y, Hu S, Tang W, Liu X, Guo X, Ying Y, Wu Y, Wen Y, Yang H. SERS determination of dopamine using metal-organic frameworks decorated with Ag/Au noble metal nanoparticle composite after azo derivatization with p-aminothiophenol. Mikrochim Acta 2022; 189:207. [PMID: 35501414 DOI: 10.1007/s00604-022-05292-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
A specific surface-enhanced Raman scattering (SERS) assay for dopamine (DA) based on an azo derivatization reaction is proposed for the first time by preparation of p-aminothiophenol (PATP)-modified composite SERS substrate, composed of metal-organic framework (MIL-101) decorated with Au and Ag nanoparticles. As the result, the SERS method for detection of the azo reaction between PATP and DA exhibits superior sensitivity, selectivity, and stability. A reasonable linearity in the range 10-6 to 10-10 mol∙L-1 is achieved, and the limit of detection is 1.2 × 10-12 mol∙L-1. The reactive SERS assay is free from interference in complex physiological fluid. The feasibility of the proposed SERS method for the detection of DA levels in fetal bovine serum (FBS) samples and human serum samples is validated by HPLC-MS methods, displaying promising application potential in early disease diagnosis.
Collapse
Affiliation(s)
- Anni Zhu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tiansheng Wang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Sen Hu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wanxin Tang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
3
|
Chen Y, He T, Liao D, Li Q, Song Y, Xue H, Zhang Y. Carbon Aerogels with Nickel@N-doped Carbon Core-shell Nanoclusters as Electrochemical Sensors for Simultaneous Determination of Hydroquinone and Catechol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Du Y, Dai L, Yang F, Zhang Y, An C. In situ polymerization confinement synthesis of ultrasmall MoTe 2 nanoparticles for the electrochemical detection of dopamine. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00930g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasmall MoTe2 nanoparticles has been synthesized using an in situ polymerization confinement method, which exhibits a low limit of detection and excellent selectivity for electrochemical dopamine sensors.
Collapse
Affiliation(s)
- Yuting Du
- Tianjin Key Laboratory of Organic Solar Cell and Photochemical Conversion, School of Chemistry and Chemical Engineering, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Linxiu Dai
- Tianjin Key Laboratory of Organic Solar Cell and Photochemical Conversion, School of Chemistry and Chemical Engineering, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Fan Yang
- Tianjin Key Laboratory of Organic Solar Cell and Photochemical Conversion, School of Chemistry and Chemical Engineering, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Yue Zhang
- Tianjin Key Laboratory of Organic Solar Cell and Photochemical Conversion, School of Chemistry and Chemical Engineering, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cell and Photochemical Conversion, School of Chemistry and Chemical Engineering, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
5
|
Facile synthesis of nickel@carbon nanorod composite for simultaneously electrochemical detection of dopamine and uric acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Xie X, Wang DP, Guo C, Liu Y, Rao Q, Lou F, Li Q, Dong Y, Li Q, Yang HB, Hu FX. Single-Atom Ruthenium Biomimetic Enzyme for Simultaneous Electrochemical Detection of Dopamine and Uric Acid. Anal Chem 2021; 93:4916-4923. [PMID: 33719390 DOI: 10.1021/acs.analchem.0c05191] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-atom catalysts have attracted numerous attention due to the high utilization of metallic atoms, abundant active sites, and highly catalytic activities. Herein, a single-atom ruthenium biomimetic enzyme (Ru-Ala-C3N4) is prepared by dispersing Ru atoms on a carbon nitride support for the simultaneous electrochemical detection of dopamine (DA) and uric acid (UA), which are coexisting important biological molecules involving in many physiological and pathological aspects. The morphology and elemental states of the single-atom Ru catalyst are studied by transmission electron microscopy, energy dispersive X-ray elemental mapping, high-angle annular dark field-scanning transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. Results show that Ru atoms atomically disperse throughout the C3N4 support by Ru-N chemical bonds. The electrochemical characterizations indicate that the Ru-Ala-C3N4 biosensor can simultaneously detect the oxidation of DA and UA with a separation of peak potential of 180 mV with high sensitivity and excellent selectivity. The calibration curves for DA and UA range from 0.06 to 490 and 0.5 to 2135 μM with detection limits of 20 and 170 nM, respectively. Moreover, the biosensor was applied to detect DA and UA in real biological serum samples using the standard addition method with satisfactory results.
Collapse
Affiliation(s)
- Xiaoli Xie
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, P.R. China.,Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Dong Ping Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Chunxian Guo
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Yuhang Liu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Qianghai Rao
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Fangming Lou
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, P.R. China
| | - Qiannan Li
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, P.R. China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350000, P.R. China
| | - Qunfang Li
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, P.R. China
| | - Hong Bin Yang
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Fang Xin Hu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| |
Collapse
|
8
|
Uppachai P, Srijaranai S, Poosittisak S, Md Isa I, Mukdasai S. Supramolecular Electrochemical Sensor for Dopamine Detection Based on Self-Assembled Mixed Surfactants on Gold Nanoparticles Deposited Graphene Oxide. Molecules 2020; 25:molecules25112528. [PMID: 32485804 PMCID: PMC7321304 DOI: 10.3390/molecules25112528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
A new supramolecular electrochemical sensor for highly sensitive detection of dopamine (DA) was fabricated based on supramolecular assemblies of mixed two surfactants, tetra-butylammonium bromide (TBABr) and sodium dodecyl sulphate (SDS), on the electrodeposition of gold nanoparticles on graphene oxide modified on glassy carbon electrode (AuNPs/GO/GCE). Self-assembled mixed surfactants (TBABr/SDS) were added into the solution to increase the sensitivity for the detection of DA. All electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The supramolecular electrochemical sensor (TBABr/SDS⋅⋅⋅AuNPs/GO/GCE) showed excellent electrocatalytic activity toward the oxidation of DA. Under the optimum conditions, the concentration of DA was obtained in the range from 0.02 µM to 1.00 µM, with a detection limit of 0.01 µM (3s/b). The results displayed that TBABr/SDS⋅⋅⋅AuNPs/GO/GCE exhibited excellent performance, good sensitivity, and reproducibility. In addition, the proposed supramolecular electrochemical sensor was successfully applied to determine DA in human serum samples with satisfactory recoveries (97.26% to 104.21%).
Collapse
Affiliation(s)
- Pikaned Uppachai
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand;
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (S.P.)
| | - Suta Poosittisak
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (S.P.)
| | - Illyas Md Isa
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia;
| | - Siriboon Mukdasai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.S.); (S.P.)
- Correspondence: ; Tel.: +66-43-009700 (ext. 42174 or 42175); Fax: +66-43-202373
| |
Collapse
|
9
|
Electrochemical Sensors for Simultaneous Determination of Small Biomolecules By 3D Layered Hollow Honeycomb-like Ni-NiO@CPVP Modified Glassy Carbon Electrode. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60010-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem 2019; 586:113415. [DOI: 10.1016/j.ab.2019.113415] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
|
11
|
Amperometric Ascorbic Acid Sensor Based on Disposable Facial Tissues Derived Carbon Aerogels. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9272-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Modification of electron structure on the semiconducting single-walled carbon nanotubes for effectively electrosensing guanine and adenine. Anal Chim Acta 2019; 1079:86-93. [DOI: 10.1016/j.aca.2019.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 11/20/2022]
|
13
|
Fabrication of CQDs/MoS2/Mo foil for the improved electrochemical detection. Anal Chim Acta 2019; 1079:79-85. [DOI: 10.1016/j.aca.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/15/2023]
|
14
|
Gold nanoparticles anchored onto three-dimensional graphene: simultaneous voltammetric determination of dopamine and uric acid. Mikrochim Acta 2019; 186:573. [DOI: 10.1007/s00604-019-3663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/27/2019] [Indexed: 01/05/2023]
|
15
|
Song Z, Sheng G, Cui Y, Li M, Song Z, Ding C, Luo X. Low fouling electrochemical sensing in complex biological media by using the ionic liquid-doped conducting polymer PEDOT: application to voltammetric determination of dopamine. Mikrochim Acta 2019; 186:220. [PMID: 30847576 DOI: 10.1007/s00604-019-3340-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 01/18/2023]
Abstract
An electrochemical sensor that can resist biofouling even when operated in complex biological medium is developed for the determination of dopamine. It is based on the use of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) that is doped with the water insoluble ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A glassy carbon electrode modified with PEDOT/IL is shown to enable accurate determination of dopamine, as a model analyte in the presence of high concentrations of proteins, and resist biological fouling even in native serum. It exhibited a low limit of detection of 33 nM for the detection of dopamine, with a wide linear range from 0.2 to 328 μM (at 0.2 V vs. saturated calomel electrode). The PEDOT/IL modified glassy carbon electrode has a porous microstructure, high electrical conductivity and good stability. The sensor can be used to quantify dopamine in human urine samples with satisfying accuracy. Graphical abstract An antifouling electrochemical sensor capable of detecting target in complex biological samples was developed based on the use of a conducting polymer (PEDOT) that was doped with a water insoluble ionic liquid.
Collapse
Affiliation(s)
- Zhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ge Sheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yige Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Mengru Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
16
|
Electrochemical sensor based on a nanocomposite prepared from TmPO 4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Mikrochim Acta 2019; 186:189. [PMID: 30771002 DOI: 10.1007/s00604-019-3299-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
Abstract
A nanocomposite is described that consists of TmPO4 and graphene oxide (GO) and is used to modify a glassy carbon electrode (GCE) to obtain a sensor for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). GO and TmPO4 were synthesized via the Hummers method and by a hydrothermal method, respectively. The nanocomposite was characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical properties of the modified GCE were studied by electrochemical impedance spectroscopy and cyclic voltammetry. The good performance of the modified GCE results from the synergistic effects between GO with its good electrical conductivity and of TmPO4 as the electron mediator that accelerates the electron transfer rate. Compared to a bare GCE, a GO/GCE and a TmPO4/GCE, the GO/TmPO4/GCE exhibits three well-defined and separated oxidation peaks (at -0.05, +0.13 and + 0.26 V vs. SCE). Responses to AA, DA and UA are linear in the 0.1-1.0 mM, 2-20 μM and 10-100 μM concentration ranges, respectively. Graphical abstract Schematic presentation of a nanocomposite that consists TmPO4 and graphene oxide (GO) and is used to modify a glassy carbon electrode (GCE) to obtain a sensor for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA).
Collapse
|
17
|
Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Mikrochim Acta 2019; 186:61. [PMID: 30627779 DOI: 10.1007/s00604-018-3158-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
A self-assembled periodic superlattice material was obtained by integrating positively charged semiconductive sheets of a Zn-NiAl layered double hydroxide (LDH) and negatively charged layers of reduced graphene oxide (rGO). The material was used to modify a glassy carbon electrode which then is shown to be a viable sensor for the diagnostic parameters dopamine (DA), uric acid (UA) and ascorbic acid (AA). The modified GCE displays excellent electrocatalytic activity towards these biomolecules. This is assumed to be due to the synergistic effects of (a) excellent interfacial electrical conductivity that is imparted by direct neighboring of conductive rGO to semiconductive channels of LDHs, (b) the superb intercalation feature of LDHs, and (c) the enlarged surface with an enormous number of active sites. The biosensor revealed outstanding electrochemical performances in terms of selectivity, sensitivity, and wide linear ranges. Typically operated at working potentials of -0.10, +0.13 and + 0.27 V vs. saturated calomel electrode, the lower detection limits for AA, DA and UA are 13.5 nM, 0.1 nM, and 0.9 nM, respectively, at a signal-to-noise ratio of 3. The sensor was applied to real-time tracking of dopamine efflux from live human nerve cells. Graphical abstract Schematic of the preparation of a superlattice self-assembled material by integrating positively charged semiconductive sheets of Zn-NiAl layered double hydroxide (LDH) with negatively charged reduced graphene oxide (rGO) layers. It was applied to simultaneous electrochemical detection of dopamine (DA), uric acid and ascorbic acid.
Collapse
|
18
|
Kaya SI, Kurbanoglu S, Ozkan SA. Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine. Crit Rev Anal Chem 2018; 49:101-125. [DOI: 10.1080/10408347.2018.1489217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Aziz A, Asif M, Azeem M, Ashraf G, Wang Z, Xiao F, Liu H. Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 2018; 1047:197-207. [PMID: 30567650 DOI: 10.1016/j.aca.2018.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
This study introduces a new strategy for periodic stacking of positively charged NiAl layered double hydroxides (LDHs) nanosheets with negatively charged monolayers of graphene (G) by systematically optimizing several parameters in a controlled co-feeding fashion and resultant heterostacked NiAl LDH/G LBL nanocomposites have been practically applied in sensitive detection of dopamine released from live cells as early Parkinson's disease (PD) diagnostic tool. PD is the second most chronic neurodegenerative disorder with gradual progressive loss of movement and muscle control causing substantial disability and threatening the life seriously. Unfortunately majority of dopaminergic neurons present in substantia nigra of PD patients are destroyed before it is being clinically diagnosed, so early stages PD diagnosis is essential. Because of direct neighboring of extremely conductive graphene to semiconductive LDHs layers, enhanced intercalation capability of LDHs, and huge surface area with numerous active sites, good synergy effect is harvested in heteroassembled NiAl LDH/G LBL material, which in turn shows admirable electrocatalytic ability in DA detection. The interference induced by UA and AA is effectively eliminated especially after the modifying the electrode with Nafion. The outstanding electrochemical sensing performance of NiAl LDH/G LBL modified electrode has been achieved in terms of broad linear range and lowest real detection limit of 2 nM (S/N = 3) towards DA oxidation. Benefitting from superior efficiency, biosensor has been successfully used for real-time in-vitro tracking of DA efflux from live human nerve cell after being stimulated. We believe that our biosensing platform of structurally integrated well-ordered LBL heteroassembly by inserting graphene directly to the interlayer galleries of LDHs material will open up new avenue in diseases determination window.
Collapse
Affiliation(s)
- Ayesha Aziz
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Asif
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Azeem
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ghazala Ashraf
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengyun Wang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Xiao
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongfang Liu
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
20
|
Hassan KM. Electrochemical sensing and simultaneous determination of ascorbic acid, dopamine and uric acid at nickel nanoparticles/poly (1,2-diaminoanthraquinone) modified electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1297-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Gutiérrez A, Gutierrez F, Eguílaz M, Parrado C, Rivas GA. Non-covalent Functionalization of Multi-wall Carbon Nanotubes with Polyarginine: Characterization and Analytical Applications for Uric Acid Quantification. ELECTROANAL 2018. [DOI: 10.1002/elan.201800034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alejandro Gutiérrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
- División de Estudios de Posgrado e Investigación; Instituto Tecnológico de Cd. Madero; J. Rosas y J. Urueta S/N Col. Los Mangos Cd. Madero, Tamaulipas C.P. 89440 México
| | - Fabiana Gutierrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| | - Marcos Eguílaz
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| | - Concepción Parrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas; Universidad Complutense de Madrid; Madrid Spain
| | - Gustavo A. Rivas
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| |
Collapse
|
22
|
Li J, Xia J, Zhang F, Wang Z, Liu Q. A Novel Electrochemical Sensor Based on Copper-based Metal-Organic Framework for the Determination of Dopamine. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700410] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 P. R. China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 P. R. China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 P. R. China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering; Shandong University of Science and Technology; Qingdao P. R. China
| |
Collapse
|
23
|
Thirumalai D, Subramani D, Yoon JH, Lee J, Paik HJ, Chang SC. De-bundled single-walled carbon nanotube-modified sensors for simultaneous differential pulse voltammetric determination of ascorbic acid, dopamine, and uric acid. NEW J CHEM 2018. [DOI: 10.1039/c7nj04371f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
De-bundled SWCNTs modified glassy carbon electrode for the simultaneous differential pulse voltammetric determination of ascorbic acid, dopamine, and uric acid.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Graduate Department of Chemical Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Devaraju Subramani
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jang-Hee Yoon
- Busan Center
- Korea Basic Science Institute
- Busan 46742
- Republic of Korea
| | - Jaewon Lee
- College of Pharmacy
- Molecular Inflammation Research Center for Aging Intervention
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Seung-Cheol Chang
- Institute of Bio-Physio Sensor Technology
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
24
|
Electrochemical characterization of Au/ZnO/PPy/RGO nanocomposite and its application for simultaneous determination of ascorbic acid, epinephrine, and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Sheng Y, Yang H, Wang Y, Han L, Zhao Y, Fan A. Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection. Talanta 2017; 166:268-274. [DOI: 10.1016/j.talanta.2017.01.066] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
|
26
|
Dinesh B, Saraswathi R, Senthil Kumar A. Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.139] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Remarkable Anti-Fouling Performance of TiO2-Modified TFC Membranes with Mussel-Inspired Polydopamine Binding. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Saraf M, Natarajan K, Saini AK, Mobin SM. Small biomolecule sensors based on an innovative MoS2–rGO heterostructure modified electrode platform: a binder-free approach. Dalton Trans 2017; 46:15848-15858. [DOI: 10.1039/c7dt03888g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrothermally synthesized MoS2–rGO nanoflowers can simultaneously sense ascorbic acid (AA), dopamine (DA) and uric acid (UA) with good separating peak-to-peak potentials.
Collapse
Affiliation(s)
- Mohit Saraf
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Kaushik Natarajan
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Anoop Kumar Saini
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Shaikh M. Mobin
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
- Discipline of Chemistry
| |
Collapse
|