Decoration of alkalization-intercalated Ti
3C
2 with ZIF-8@ZIF-67-derived N-doped carbon nanocage for detecting 4-nitrophenol.
Mikrochim Acta 2023;
190:133. [PMID:
36917315 DOI:
10.1007/s00604-023-05713-2]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
The highly effective alk-Ti3C2/bimetallic Co, Zn embedded N-doped carbon (Co-Zn-NC) composite was fabricated by a convenient self-assembled method strategy and applied to the reduction of 4-nitrophenol(4-NP). Co-Zn-NC nanocage was synthesized by using designed core-shell ZIF-8@ZIF-67 as sacrificial template. The Co-Zn-NC was prepared by pyrolysis of ZIF-8@ZIF-67 at 900 °C with high-specific surface area and hollow structure, which facilitates the dispersion of Co species and produces abundant Co-Nx active sites. In addition, the electrochemical property and specific surface area of Ti3C2 were improved by alkaline treatment. As a result, compared with alk-Ti3C2 and Co-Zn-NC, the alk-Ti3C2/Co-Zn-NC sensor showed higher activity and stability in detecting 4-NP. The alk-Ti3C2/Co-Zn-NC sensor has a wide determination range of 2-500 μM and a low detection limit of 0.23 μM for 4-NP. In addition, the newly developed alk-Ti3C2/Co-Zn-NC sensor displayed satisfactory reproducibility and good stability in detecting 4-NP in aqueous samples.
Collapse