1
|
Srinivas S, Senthil Kumar A. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. BIOSENSORS 2023; 13:353. [PMID: 36979565 PMCID: PMC10046220 DOI: 10.3390/bios13030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Pencil graphite electrode (PGE) is an alternative, commercially available, ready-to-use, screen-printed electrode for a wide range of electroanalytical applications. Due to the complex-matrix composition and unpredictable electro-inactive nature of PGE in its native form, a surface pre-treatment/activation procedure is highly preferred for using it as an electroactive working electrode for electroanalytical applications. In this article, we review various surface pre-treatment and modification procedures adopted in the literature with respect to the sensitive and selective detection of dopamine as a model system. Specific generation of the carbon-oxygen functional group, along with partial surface exfoliation of PGE, has been referred to as a key step for the activation. Based on the Scopus® index, the literature collection was searched with the keywords "pencil and dopamine". The obtained data were segregated into three main headings as: (i) electrochemically pre-treated PGE; (ii) polymer-modified PGEs; and (iii) metal and metal nanocomposite-modified PGE. This critical review covers various surface activation procedures adopted for the activation for PGE suitable for dopamine electroanalytical application.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Annamalai Senthil Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore 632 014, India
| |
Collapse
|
2
|
Aghris S, Azriouil M, Matrouf M, Ettadili F, Laghrib F, Saqrane S, Farahi A, Bakasse M, Lahrich S, El Mhammedi M. Chitosan biopolymer coated graphite electrode as a robust electrochemical platform for the detection of the insecticide flubendiamide. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Sedhu N, Jagadeesh Kumar J, Sivaguru P, Raj V. Electrochemical detection of riboflavin in pharmaceutical and food samples using in situ electropolymerized glycine coated pencil graphite electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Manikandan R, Pugal Mani S, Sangeetha Selvan K, Yoon JH, Chang SC. Anodized Screen-Printed Electrode Modified with Poly(5-amino-4H-1,2,4-triazole-3-thiol) Film for Ultrasensitive Detection of Hg2+ in Fish Samples. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Ahoulou S, Richart C, Carteret C, Pillet S, Vilà N, Walcarius A. Weak Coordinating Character of Organosulfonates in Oriented Silica Films: An Efficient Approach for Immobilizing Cationic Metal-Transition Complexes. Molecules 2022; 27:molecules27175444. [PMID: 36080210 PMCID: PMC9458166 DOI: 10.3390/molecules27175444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Iron (II) tris(2,2′-bipyridine) complexes, [Fe(bpy)3]2+, have been synthesized and immobilized in organosulfonate-functionalized nanostructured silica thin films taking advantage of the stabilization of [Fe(H2O)6]2+ species by hydrogen bonds to the anionic sulfonate moieties grafted to the silica nanopores. In a first step, thiol-based silica films have been electrochemically generated on indium tin oxide (ITO) substrates by co-condensation of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS). Secondly, the thiol function has been modified to sulfonate by chemical oxidation using hydrogen peroxide in acidic medium as an oxidizing agent. The immobilization of [Fe(bpy)3]2+ complexes has been performed in situ in two consecutive steps: (i) impregnation of the sulfonate functionalized silica films in an aqueous solution of iron (II) sulfate heptahydrate; (ii) dipping of the iron-containing mesostructures in a solution of bipyridine ligands in acetonitrile. The in situ formation of the [Fe(bpy)3]2+ complex is evidenced by its characteristic optical absorption spectrum, and elemental composition analysis using X-ray photoelectron spectroscopy. The measured optical and electrochemical properties of immobilized [Fe(bpy)3]2+ complexes are not altered by confinement in the nanostructured silica thin film.
Collapse
Affiliation(s)
- Samuel Ahoulou
- LCPME, CNRS, Universite de Lorraine, F-54000 Nancy, France
- CRM2, CNRS, Universite de Lorraine, F-54000 Nancy, France
| | - Clara Richart
- LCPME, CNRS, Universite de Lorraine, F-54000 Nancy, France
| | | | - Sébastien Pillet
- CRM2, CNRS, Universite de Lorraine, F-54000 Nancy, France
- Correspondence: (S.P.); (N.V.); (A.W.)
| | - Neus Vilà
- LCPME, CNRS, Universite de Lorraine, F-54000 Nancy, France
- Correspondence: (S.P.); (N.V.); (A.W.)
| | - Alain Walcarius
- LCPME, CNRS, Universite de Lorraine, F-54000 Nancy, France
- Correspondence: (S.P.); (N.V.); (A.W.)
| |
Collapse
|
6
|
Vishnu N, Sihorwala AZ, Sharma CS. Paper Based Low‐Cost and Portable Ultrasensitive Electroanalytical Devicefor The Detection of Uric Acid in Human Urine. ChemistrySelect 2021. [DOI: 10.1002/slct.202101632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nandimalla Vishnu
- Department of Chemistry School of Science GITAM Deemed to be University Rudraram 502329 Telangana India
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory Department of Chemical Engineering Indian Institute of Technology Hyderabad Kandi 502285 Telangana India
| | - Ahmed Z. Sihorwala
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory Department of Chemical Engineering Indian Institute of Technology Hyderabad Kandi 502285 Telangana India
| | - Chandra S. Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory Department of Chemical Engineering Indian Institute of Technology Hyderabad Kandi 502285 Telangana India
| |
Collapse
|
8
|
Furtado NJS, Magalhães JL. Cobalt ferrite nanoparticles as a source of intrinsic metals for simultaneous electrosynthesis of Prussian blue and cobalt hexacyanoferrate. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Vishnu N, Gopalakrishnan A, Badhulika S. Impact of intrinsic iron on electrochemical oxidation of pencil graphite and its application as supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Nellaiappan S, Kumar AS. Electrocatalytic oxidation and flow injection analysis of isoniazid drug using a gold nanoparticles decorated carbon nanofibers-chitosan modified carbon screen printed electrode in neutral pH. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Li J, Zhang F, Hu Z, Song W, Li G, Liang G, Zhou J, Li K, Cao Y, Luo Z, Cai K. Drug "Pent-Up" in Hollow Magnetic Prussian Blue Nanoparticles for NIR-Induced Chemo-Photothermal Tumor Therapy with Trimodal Imaging. Adv Healthc Mater 2017; 6. [PMID: 28464527 DOI: 10.1002/adhm.201700005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/13/2017] [Indexed: 01/03/2023]
Abstract
The study reports a biocompatible smart drug delivery system based on a doxorubicin (DOX) blending phase-change material of 1-pentadecanol loaded hollow magnetic Prussian blue nanoparticles, resulting in HMNP-PB@Pent@DOX. The system possesses concentration-dependent high thermogenesis (>50 °C) when applying a near-infrared (NIR) laser irradiation only for 5 min. Furthermore, the system realizes near "zero release" of drug and is efficiently triggered by NIR for drug delivery in an "on" and "off" manner, thus inducing cell apoptosis in vitro and in vivo. Moreover, the system clearly indicates tumor site with trimodal imaging of magnetic resonance imaging, photoacoustic tomography imaging, and infrared thermal imaging. Furthermore, the system achieves efficient chemo-photothermal combined tumor therapy in vivo with 808 nm laser irradiation for 5 min at 1.2 W cm-2 , revealing the good tumor inhibition effect comparing with those of chemotherapy or photothermal therapy alone. The system is also confirmed to be biocompatible in regard to the mortality rate.
Collapse
Affiliation(s)
- Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Fengshou Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Weidong Song
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Gaofeng Liang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Jun Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Medical University of Chongqing Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|