1
|
Shimizu T, Wang H, Wakamatsu K, Ohkata S, Tanifuji N, Yoshikawa H. Electrochemically driven physical properties of solid-state materials: action mechanisms and control schemes. Dalton Trans 2024; 53:16772-16796. [PMID: 39041779 DOI: 10.1039/d4dt01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The various physical properties recently induced by solid-state electrochemical reactions must be comprehensively understood, and their mechanisms of action should be elucidated. Reversible changes in conductivity, magnetism, and colour have been achieved by combining the redox reactions of d metal ions and organic materials, as well as the molecular and crystal structures of solids. This review describes the electrochemically driven physical properties of conductors, magnetic materials, and electrochromic materials using various electrochemical devices.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan.
| | - Heng Wang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Katsuhiro Wakamatsu
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| | - Shunsuke Ohkata
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| | - Naoki Tanifuji
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan.
| | - Hirofumi Yoshikawa
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| |
Collapse
|
2
|
Ambore SD, Bhosale SV, Bhosale SV. Y-Shaped Acceptor-π-Donor-π-Acceptor Configured Anthraquinone-Tethered Phenothiazine Molecular Scaffold for High-Performance Organic Pseudocapacitors. Chem Asian J 2024:e202400691. [PMID: 39305145 DOI: 10.1002/asia.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/02/2024] [Indexed: 11/01/2024]
Abstract
For the first time acceptor-π-donor-π-acceptor (A-π-D-π-A) based Y-type organic electrode material have been designed and successfully utilized in supercapacitor (SC) application. This Y-type molecular architecture coined as AQ-Im-PTZ-Im-AQ based on anthraquinone (AQ) (A)-imidazole (Im) (π)-phenothiazine (PTZ) (D)-imidazole (Im) (π)-anthraquinone (AQ) (A) in combination with graphite foil (GF). As-fabricated PTZ-Im-AQ/GF and AQ-Im-PTZ-Im-AQ/GF electrode have shown the good energy storage properties in three-electrode supercapacitor system. Moreover, two-electrode symmetric supercapacitor (SSC) device based on AQ-Im-PTZ-Im-AQ/GF electrode exhibited specific capacitance (Csp) of 68.97 F g-1 at 1 A g-1 current density. The specific electron density (ED) of SSC was observed to be 12.06 Wh kg-1 at a specific power density (PD) of 1798.50 W kg-1. The SSC device exhibited 81.62 % of Csp retention after 5000 galvanostatic charge-discharge (GCD) cycles. For real world applications, AQ-Im-PTZ-Im-AQ/GF electrode was tested in symmetric Csp coin cell with applied potential voltage window of -0.4 to 1.0 V was found to be 112.32 F g-1 at 0.5 A g-1. Moreover, it realized high specific capacitance and high energy density of 19.66 Wh kg-1 at 891.94 W kg-1 power density. As a results, AQ-Im-PTZ-Im-AQ/GF make as an attractive electrode material for application in next-generation SCs.
Collapse
Affiliation(s)
- Sumit D Ambore
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, -500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, Uttar Pradesh, India
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, -500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, Uttar Pradesh, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kadaganchi, Kalaburagi, -585367, Karnataka, India
| |
Collapse
|
3
|
Saltan GM, Yeşil T, Ötken AA, Zafer C, Dinçalp H. Perylene Diimide-Based Dimeric Electron Acceptors with Molecular Conformations for Perovskite Solar Cells. Chempluschem 2024; 89:e202400131. [PMID: 38527253 DOI: 10.1002/cplu.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
This paper reports five novel PDI dimer type electron transport materials (ETMs) employing o-indoloquinoxaline (o-Iq), m-indoloquinoxaline (m-Iq), and cibalackrot (Ci) groups as the core building blocks and presents the twisted structures of PDI dimers coded as PDI-NHR-o-Iq, PDI-o-Iq, PDI-NHR-m-Iq, PDI-m-Iq and PDI-NHR-Ci dyes (see Scheme 1 and 2). We have systematically compared their photophysical, electrochemical, and optoelectronic properties with respect to the reference dye (2PDI-NHR), which is directly connected of two PDI planes. Their calculated HOMO-LUMO energy levels are sufficient for charge transfer to the perovskite material so that structure-photovoltaic performance relationship of synthesized ETM dyes can be evaluated. When the binding position of indoloquinoxaline group between PDI rings are changed from o- to m- positions, most of the photophysical and electrochemical properties of PDI dimer are dramatically changed, finally improving the photovoltaic performances.
Collapse
Affiliation(s)
- Gözde Murat Saltan
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunus Emre, 45140, Manisa, Turkey Tel
| | - Tamer Yeşil
- Solar Energy Institute, Ege University, 35100 Bornova, Izmir, Turkey
| | - Aysun Albayrak Ötken
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunus Emre, 45140, Manisa, Turkey Tel
| | - Ceylan Zafer
- Solar Energy Institute, Ege University, 35100 Bornova, Izmir, Turkey
| | - Haluk Dinçalp
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunus Emre, 45140, Manisa, Turkey Tel
| |
Collapse
|
4
|
Liu Y, Xing Z, Jia S, Shi X, Chen Z, Jiang Z. Research Progress in Special Engineering Plastic-Based Electrochromic Polymers. MATERIALS (BASEL, SWITZERLAND) 2023; 17:73. [PMID: 38203927 PMCID: PMC10780189 DOI: 10.3390/ma17010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
SPECPs are electrochromic polymers that contain special engineering plastic structural characteristic groups (SPECPs). Due to their high thermal stability, mechanical properties, and weather resistance, they are also known as high-performance electrochromic polymer (HPEP or HPP). Meanwhile, due to the structural characteristics of their long polymer chains, these materials have natural advantages in the application of flexible electrochromic devices. According to the structure of special engineering plastic groups, SPECPs are divided into five categories: polyamide, polyimide, polyamide imide, polyarylsulfone, and polyarylketone. This article mainly introduces the latest research on SPECPs. The structural design, electrochromic properties, and applications of these materials are also introduced in this article, and the challenges and future development trends of SPECPs are prospected.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Chen
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun 130012, China; (Y.L.); (Z.X.); (S.J.); (X.S.)
| | - Zhenhua Jiang
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun 130012, China; (Y.L.); (Z.X.); (S.J.); (X.S.)
| |
Collapse
|
5
|
Tao B, Ouyang M, Hua Q, Kong C, Zhang J, Li W, Bai R, Liu J, Lv X, Zhang C. High Electrochromic Performance of Perylene Bisimide/ZnO Hybrid Films: An Efficient, Energy-Saving, and Green Route. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13730-13739. [PMID: 36854655 DOI: 10.1021/acsami.2c22029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The composite or hybrid of organic and inorganic materials is one of the common ways to improve the properties of photoelectric functional materials. Perylene bisimide (PBI) derivatives, as large π-conjugated organic small molecules, are a class of photoelectric functional materials with excellent performance. However, there were few reports on PBIs in the electrochromic field due to the difficulty of film-forming caused by their generally poor solubility. Here, water-soluble PBI derivatives (PDI-COOH and PCl-COOH) were synthesized. The hybrid films (ZnO@PDI-COOH/PCl-COOH) formed by the coordination bond and π-π stacking were prepared via a simple solution immersion method. Fourier transform infrared spectrometry and X-ray diffraction as well as scanning electron microscopy, and energy-dispersive spectrometry results further confirmed the formation of hybrid films. At the same time, electrochemical and spectroelectrochemical analyses revealed that the films have reversible redox activity and cathodic electrochromic properties, which can change from orange-red to purple. The ZnO@PDI-COOH hybrid film formed by coordination bonds exhibits fast switching times (1.7 s colored time and 2.6 s bleached time), good stability (retain 92.41% contrast after 2400 cycles), a low driving voltage (-0.6-0 V), and a high coloration efficiency (276.14 cm2/C). The corresponding electrochromic devices also have good electrochromic properties. On this basis, a large-area (100 mm × 100 mm) electrochromic display device with fine patterning was fabricated by using the hybrid film, and the device shows excellent reversible electrochromic performance. This idea of constructing organic-inorganic hybrid materials with coordination bonds provides an effective, energy-saving, and green method, which is expected to promote the large-scale and fine production of electrochromic materials.
Collapse
Affiliation(s)
- Bowen Tao
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mi Ouyang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiqi Hua
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chenwen Kong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jinlu Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weijun Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ru Bai
- Center for Integrated Spintronics, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Junlei Liu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaojing Lv
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Conformational control of morphology for perylene diimide dimer as electron transporting material at perovskite surface. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Zawadzka M, Nitschke P, Musioł M, Siwy M, Pluczyk-Małek S, Honisz D, Łapkowski M. Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials. Molecules 2023; 28:molecules28041740. [PMID: 36838729 PMCID: PMC9968047 DOI: 10.3390/molecules28041740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Electrochromism of organic compounds is a well-known phenomenon; however, nowadays, most research is focused on anodic coloring materials. Development of efficient, cathodic electrochromic materials is challenging due to the worse stability of electron accepting materials compared with electron donating ones. Nevertheless, designing stable cathodic coloring organic materials is highly desired-among other reasons-to increase the coloration performance. Hence, four phthalimide derivatives named 1,5-PhDI, 1,4-PhDI, 2,6-PhDI and 3,3'-PhDI were synthesized and analyzed in depth. In all cases, two imide groups were connected via naphthalene (1,5-PhDI, 1,4-PhDI, 2,6-PhDI) or 3,3'-dimethylnaphtidin (3,3'-PhDI) bridge. To observe the effect of chemical structure on physicochemical properties, various positions of imide bond were considered, namely, 1,5- 1,4- and 2,6-. Additionally, a compound with the pyromellitic diimide unit capped with two 1-naphtalene substituents was obtained. All compounds were studied in terms of their thermal behavior, using differential calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, electrochemical (CV, DPV) and spectroelectrochemical (UV-Vis and EPR) analyses were performed to evaluate the obtained materials in terms of their application as cathodic electrochromic materials. All obtained materials undergo reversible electrochemical reduction which leads to changes in their optical properties. In the case of imide derivatives, absorption bands related to both reduced and neutral forms are located in the UV region. However, importantly, the introduction of the 3,3'-dimethylnaphtidine bridge leads to a noticeable bathochromic shift of the reduced form absorption band of 3,3'-PhDI. This indicates that optimization of the phthalimide structure allows us to obtain stable, cathodic electrochromic materials.
Collapse
Affiliation(s)
- Magdalena Zawadzka
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sandra Pluczyk-Małek
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Correspondence: (S.P.-M.); (M.Ł.)
| | - Damian Honisz
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
- Correspondence: (S.P.-M.); (M.Ł.)
| |
Collapse
|
8
|
Matsumoto I, Sekiya R, Fukui H, Sun R, Haino T. Electrochromism of Nanographenes in the Near‐Infrared Region. Angew Chem Int Ed Engl 2022; 61:e202200291. [DOI: 10.1002/anie.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Ikuya Matsumoto
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Ryo Sekiya
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Hiroji Fukui
- Advanced Technology Institute Corporate R&D Center Sekisui Chemical Co., Ltd. 2-1 Hyakuyama Shimamoto-cho, Mishima-gun, Osaka 618-0021 Japan
| | - Ren‐De Sun
- Advanced Technology Institute Corporate R&D Center Sekisui Chemical Co., Ltd. 2-1 Hyakuyama Shimamoto-cho, Mishima-gun, Osaka 618-0021 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima 739-8526 Japan
| |
Collapse
|
9
|
Matsumoto I, Sekiya R, Fukui H, Sun RD, Haino T. Electrochromism of Nanographenes in the Near‐Infrared Region. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ikuya Matsumoto
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku chemistry JAPAN
| | - Ryo Sekiya
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku chemistry JAPAN
| | - Hiroji Fukui
- Sekisui Chemical Co, Ltd Advanced Technology Institute, Corporate R&D Center 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka JAPAN
| | - Ren-De Sun
- Sekisui Chemical Co., Ltd. Advanced Technology Institute, Corporate R&D Center 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun Osaka JAPAN
| | - Takeharu Haino
- Graduate School of Science, Hiroshima University Department of Chemistry 1-3-1 Kagamiyama 739-8526 Higashi-Hiroshima JAPAN
| |
Collapse
|
10
|
Roh DH, Shin H, Kim HT, Kwon TH. Sono-Cavitation and Nebulization-Based Synthesis of Conjugated Microporous Polymers for Energy Storage Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61598-61609. [PMID: 34928128 DOI: 10.1021/acsami.1c13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conjugated microporous polymers (CMPs) are promising energy storage materials owing to their rigid and cross-linked microporous structures. However, the fabrication of nano- and microstructured CMP films for practical applications is currently limited by processing challenges. Herein, we report that combined sono-cavitation and nebulization synthesis (SNS) is an effective method for the synthesis of CMP films from a monomer precursor solution. Using the SNS, the scalable fabrication of microporous and redox-active CMP films can be achieved via the oxidative C-C coupling polymerization of the monomer precursor. Intriguingly, the ultrasonic frequency used during SNS strongly affects the synthesis of the CMP films, resulting in an approximately 30% improvement in reaction yields and ca. 1.3-1.7-times enhanced surface areas (336-542 m2/g) at a high ultrasonic frequency of 180 kHz compared to those at 120 kHz. Furthermore, we prepare highly conductive, three-dimensional porous electrodes [CMP/carbon nanotube (CNT)] by a layer-by-layer sequential deposition of CMP films and CNTs via SNS. Finally, an asymmetric supercapacitor comprising the CMP/CNT cathode and carbon anode shows a high specific capacitance of 477 F/g at 1 A/g with a wide working potential window (0-1.4 V) and robust cycling stability, exhibiting 94.4% retention after 10,000 cycles.
Collapse
Affiliation(s)
- Deok-Ho Roh
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - HyeonOh Shin
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Tak Kim
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Environment & Sustainable Resources, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Hua C, Liu K, Wu Y, Xu W, Zhang J, Wang Z, Liu K, Fang Y. An O-Carborane Derivative of Perylene Bisimide-Based Thin Film Displaying both Electrochromic and Electrofluorochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49500-49508. [PMID: 34612639 DOI: 10.1021/acsami.1c15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application in displays, information encryption, and sensors has boosted studies of electrochromic (EC) systems combining large contrast, fast response, high robustness, and low-cost properties. Herein, we report a film-type new EC system with a non-planar perylene bisimide-carborane derivative (PBI-CB) as the electroactive materials. It was revealed that the film demonstrated outstanding EC properties with response times of 1.18 and 0.94 s for the coloration and bleaching processes, respectively, large transmittance variation around 630 nm (45.7%), and superior stability for more than 200 coloration-bleaching cycles. Moreover, the film also showed precious electrofluorochromic (EFC) properties. The emission around 650 nm at the "on" state could be more than 24.5 times than that at the "off" state, and the response times of the off and on processes could reach 2.2 s and 4.3 s, respectively. Considering the facts that the film was fabricated via simple drop-coating, the EC/EFC operation was performed via a routine three-electrode system and the voltage applied is only -1.3 V, we believe that the EC/EFC system as developed would find applications in smart windows, information encryption, optoelectrical sensing, etc. In addition, the work could also pave the way for developing combined EC/EFC systems via employing known organic fluorophores as the electrochemical active materials, which are not only abundant in numbers but also solution-processable.
Collapse
Affiliation(s)
- Chunxia Hua
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Ying Wu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
12
|
Wang H, Jiang N, Zhang Q, Xie G, Tang N, Liu L, Xie Z. Facilely Tunable Redox Behaviors in Donor–Node–Acceptor Polymers toward High-Performance Ambipolar Electrode Materials. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailong Wang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nianqiang Jiang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qinglei Zhang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ningning Tang
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, , Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Nirmalananthan-Budau N, Budau JH, Moldenhauer D, Hermann G, Kraus W, Hoffmann K, Paulus B, Resch-Genger U. Substitution pattern controlled aggregation-induced emission in donor-acceptor-donor dyes with one and two propeller-like triphenylamine donors. Phys Chem Chem Phys 2020; 22:14142-14154. [PMID: 32555804 DOI: 10.1039/d0cp00413h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a comparative study of the spectroscopic properties of the donor-acceptor-donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitrile-triphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state. Our results reveal control of the aggregation-induced spectroscopic changes and the packing motifs of the dye molecules in the solid state by the chemical nature and structure of the second nitrogen-containing donor, i.e., a planar and a rigid julolidine or a twisted triphenyl group. Assuming that the TMT and TMJ aggregates show a comparable arrangement of the molecules to the respective crystals, these different molecular interactions in the solid state are responsible for aggregation induced emission (AIE) in the case of TMT and its absence for TMJ. Moreover, a versatile strategy for the fluorescence enhancement of only weakly emissive AIE dyes is shown, turning these dyes into bright nanoscale fluorescent reporters by using them as stains for preformed polymer particles.
Collapse
Affiliation(s)
- Nithiya Nirmalananthan-Budau
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany. and Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Johannes Horst Budau
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Daniel Moldenhauer
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| | - Gunter Hermann
- QoD Technologies GmbH, Altensteinstraße 40, D-14195 Berlin, Germany
| | - Werner Kraus
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Structure Analytics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | - Katrin Hoffmann
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| | - Beate Paulus
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Ute Resch-Genger
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| |
Collapse
|
14
|
De Adhikari A, Morag A, Seo J, Kim JM, Jelinek R. Polydiacetylene-Perylenediimide Supercapacitors. CHEMSUSCHEM 2020; 13:3230-3236. [PMID: 32212413 DOI: 10.1002/cssc.202000440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/24/2020] [Indexed: 06/10/2023]
Abstract
Organic supercapacitors have attracted interest as promising "green" and efficient components in energy storage applications. A polydiacetylene derivative coupled with reduced graphene oxide was employed, for the first time, to generate an organic pseudocapacitance-based supercapacitor that exhibited excellent electrochemical properties. Specifically, diacetylene monomers were functionalized with perylenediimide (PDI), spontaneously forming elongated microfibers. Following polymerization through UV irradiation, the PDI-polydiacetylene microfibers were interspersed with reduced graphene oxide (rGO), generating a porous electrode material exhibiting a high surface area and facilitating efficient ion diffusion, both essential preconditions for supercapacitor applications. We show that PDI-polydiacetylene has an important role in enhancing the electrochemical properties as a supercapacitor electrode. Besides stabilizing the microporous electrode organization, the delocalized π electrons in both the PDI residues and conjugated network of the polydiacetylene contributed to a significantly higher capacitance (specific capacitance >600 F g-1 at 1 A g-1 current density), longer discharge time, and high power density. The PDI-polydiacetylene-rGO electrodes were employed in a functional supercapacitor device.
Collapse
Affiliation(s)
- Amrita De Adhikari
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ahiud Morag
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Joonsik Seo
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Korea
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
15
|
Drewniak A, Tomczyk MD, Knop K, Walczak KZ, Ledwon P. Multiple Redox States and Multielectrochromism of Donor–Acceptor Conjugated Polymers with Aromatic Diimide Pendant Groups. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anna Drewniak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz D. Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Knop
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Krzysztof Z. Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
16
|
Constantin CP, Bejan AE, Damaceanu MD. Synergetic Effect between Structural Manipulation and Physical Properties toward Perspective Electrochromic n-Type Polyimides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catalin-Paul Constantin
- Polycondensation and Thermostable Polymers Department, ″Petru Poni″ Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, Iasi 700487, Romania
| | - Andra-Elena Bejan
- Polycondensation and Thermostable Polymers Department, ″Petru Poni″ Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, Iasi 700487, Romania
| | - Mariana-Dana Damaceanu
- Polycondensation and Thermostable Polymers Department, ″Petru Poni″ Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, Iasi 700487, Romania
| |
Collapse
|
17
|
Yen HJ, Liou GS. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Chen Y, Lu Q, Gao L, Zhang X, Yang C, Cai W, Pang G, Niu H, Wang W, Hou Y, Zhang Y. Synthesis and optoelectronic properties of novel alternate copolymers based on diketopyrrolopyrrole and triarylamine units spaced by flexible chain. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Yen HJ, Liou GS. Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym Chem 2018. [DOI: 10.1039/c8py00367j] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triphenylamine-containing electrochromic materials with great potential applications in low energy-consumption displays, light-adapting mirrors in vehicles, and smart windows have experienced an exponential growth of research interests. In this review, the newly developed triphenylamine-based derivatives and polymers are reviewed and elaborated.
Collapse
Affiliation(s)
- Hung-Ju Yen
- Institute of Chemistry
- Academia Sinica
- Nankang
- Taiwan
| | - Guey-Sheng Liou
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
20
|
Novel Polyamides with 5H-Dibenzo[b,f]azepin-5-yl-Substituted Triphenylamine: Synthesis and Visible-NIR Electrochromic Properties. Polymers (Basel) 2017; 9:polym9100542. [PMID: 30965843 PMCID: PMC6418813 DOI: 10.3390/polym9100542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/31/2023] Open
Abstract
In this study, a new diamine monomer, namely 4,4′-diamino-4″-(5H-dibenzo[b,f]azepin-5-yl)triphenylamine, was prepared and polymerized with four kinds of dicarboxylic acids via direct polycondensation reaction resulting in a novel series of soluble and electroactive polyamides (PAs). The tough thin films of all PAs could be solution-cast onto an indium-tin oxide (ITO)-coated glass substrate owing to the good solubility in polar organic solvents. Two pairs of obvious redox peaks for these films were observed in cyclic voltammetry (CV) with low onset potentials (Eonset) of 0.37–0.42 V accompanying with remarkable reversible color changes between light yellow and dark blue. A new absorption peak at around 915 nm emerged in near infrared (NIR) spectra; the increasing potential indicated that PAs could be used as a NIR electrochromic material. Moreover, the PAs showed high coloration efficiency (CE; η) in the range of 190–259 cm2 C−1.
Collapse
|
21
|
Synthesis and Electrochromism of Highly Organosoluble Polyamides and Polyimides with Bulky Trityl-Substituted Triphenylamine Units. Polymers (Basel) 2017; 9:polym9100511. [PMID: 30965815 PMCID: PMC6419009 DOI: 10.3390/polym9100511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/07/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022] Open
Abstract
Two series of polyamides and polyimides containing bulky trityl-substituted triphenylamine units were synthesized from condensation reactions of 4,4′-diamino-4′′-trityltriphenylamine with various dicarboxylic acids and tetracarboxylic dianhydrides, respectively. The polymers showed good solubility and film-forming ability. Flexible or robust films could be readily obtained via solution-casting. The use of aliphatic diacid or dianhydride reduces interchain charge transfer complexing and leads to colorless polyamide and polyimide films. These polymers showed glass-transition temperatures in the range of 206–336 °C. Cyclic voltammograms of the polyamide and polyimide films displayed reversible electrochemical oxidation processes in the range of 0–1.0 or 0–1.3 V. Upon oxidation, the color of polymer films changes from colorless to blue-green or blue. As compared to the polyimide counterparts, the polyamides showed lower oxidation potentials and thus a higher electrochromic stability and coloration efficiency. Simple electrochromic devices were also fabricated as a preliminary investigation for electrochromic applications of the prepared polymers.
Collapse
|