1
|
Rubino A, Queirós R. Electrochemical determination of heavy metal ions applying screen-printed electrodes based sensors. A review on water and environmental samples analysis. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
2
|
Mettakoonpitak J, Sawatdichai N, Thepnuan D, Siripinyanond A, Henry CS, Chantara S. Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples. Mikrochim Acta 2023; 190:241. [PMID: 37243836 DOI: 10.1007/s00604-023-05819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
The potential reach of point-of-care (POC) diagnostics into daily routines for exposure to reactive oxygen species (ROS) and Cu in aerosolized particulate matter (PM) demands that microfluidic paper-based analytical devices (μPADs) take into consideration the simple detection of these toxic PM components. Here, we propose μPADs with a dual-detection system for simultaneous ROS and Cu(II) detection. For colorimetric ROS detection, the glutathione (GSH) assay with a folding design to delay the reaction yielded complete ROS and GSH oxidation, and improved homogeneity of color development relative to using the lateral flow pattern. For electrochemical Cu(II) determination, 1,10-phenanthroline/Nafion modified graphene screen-printed electrodes showed ability to detect Cu(II) down to pg level being low enough to be applied to PM analysis. No intra- and inter-interference affecting both systems were found. The proposed μPADs obtained LODs for 1,4-naphthoquinone (1,4-NQ), used as the ROS representative, and Cu(II) of 8.3 ng and 3.6 pg, respectively and linear working ranges of 20 to 500 ng for ROS and 1 × 10-2 to 2 × 102 ng for Cu(II). Recovery of the method was between 81.4 and 108.3% for ROS and 80.5-105.3% for Cu(II). Finally, the sensors were utilized for simultaneous ROS and Cu(II) determination in PM samples and the results statistically agreed with those using the conventional methods at 95% confidence.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Nalatthaporn Sawatdichai
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Duangduean Thepnuan
- Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
3
|
Zhao YB, Cen T, Jiang F, He W, Zhang X, Feng X, Gao M, Ludwig C, Bakker E, Wang J. Aerosol-into-liquid capture and detection of atmospheric soluble metals across the gas-liquid interface using Janus-membrane electrodes. Proc Natl Acad Sci U S A 2023; 120:e2219388120. [PMID: 36848559 PMCID: PMC10013784 DOI: 10.1073/pnas.2219388120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/28/2022] [Indexed: 03/01/2023] Open
Abstract
The soluble fraction of atmospheric transition metals is particularly associated with health effects such as reactive oxygen species compared to total metals. However, direct measurements of the soluble fraction are restricted to sampling and detection units in sequence burdened with a compromise between time resolution and system bulkiness. Here, we propose the concept of aerosol-into-liquid capture and detection, which allowed one-step particle capture and detection via the Janus-membrane electrode at the gas-liquid interface, enabling active enrichment and enhanced mass transport of metal ions. The integrated aerodynamic/electrochemical system was capable of capturing airborne particles with a cutoff size down to 50 nm and detecting Pb(II) with a limit of detection of 95.7 ng. The proposed concept can pave the way for cost-effective and miniaturized systems, for the capture and detection of airborne soluble metals in air quality monitoring, especially for abrupt air pollution events with high airborne metal concentrations (e.g., wildfires and fireworks).
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Tianyu Cen
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Bioenergy and Catalysis Laboratory, Energy and Environment Research Division, Paul Scherrer Institut, Villigen5232, Switzerland
| | - Fuze Jiang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Weidong He
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
- Filter Test Center, College of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning110819, China
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Xiaoxiao Feng
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Min Gao
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Christian Ludwig
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Bioenergy and Catalysis Laboratory, Energy and Environment Research Division, Paul Scherrer Institut, Villigen5232, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva1211, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| |
Collapse
|
4
|
Zareh MM, Saleem NO, Abd-ElSattar A. A Ni-Sensor Based on Activated Charcoal Plastic Membrane. JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77:1577-1585. [DOI: 10.1134/s1061934822120164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 09/02/2023]
|
5
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|
6
|
Mettakoonpitak J, Junkong P, Saenonphut A, Kwamman T, Siripinyanond A, Henry CS. An electrochemical paper-based analytical sensor for one-step latex protein detection. Analyst 2022; 147:932-939. [DOI: 10.1039/d1an02067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proposed simple electrochemical paper-based analytical sensor offered one-step latex protein detection by measuring remaining copper after online protein complexation
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi 22000, Thailand
| | - Preeyanuch Junkong
- Department of Chemistry, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Aphiwan Saenonphut
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi 22000, Thailand
| | - Tanagorn Kwamman
- Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
7
|
Anchidin-Norocel L, Savage WK, Gutt G, Amariei S. Development, Optimization, Characterization, and Application of Electrochemical Biosensors for Detecting Nickel Ions in Food. BIOSENSORS 2021; 11:519. [PMID: 34940276 PMCID: PMC8699131 DOI: 10.3390/bios11120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 05/17/2023]
Abstract
Nickel is naturally present in drinking water and many dietary items, which expose the general population to nickel ingestion. This heavy metal can have a variety of harmful health effects, causing allergies and skin disorders (i.e., dermatitis), lung, cardiovascular, and kidney diseases, and even certain cancers; therefore, nickel detection is important for public health. Recent innovations in the development of biosensors have demonstrated they offer a powerful new approach over conventional analytical techniques for the identification and quantification of user-defined compounds, including heavy metals such as nickel. We optimized five candidate nickel-biosensing receptors, and tested each for efficiency of binding to immobilization elements on screen-printed electrodes (SPEs). We characterized the application of nickel-detecting biosensors with four different cultivated vegetables. We analyzed the efficiency of each nickel-detecting biosensor by potentiostat and atomic absorption spectrometry and compared the results from the sample analytes. We then analyzed the performance characteristics and responses of assembled biosensors, and show they are very effective at measuring nickel ions in food, especially with the urease-alginate biosensor affixed to silver SPEs, measured by cyclic voltammetry (sensitivity-2.1921 µA Mm-1 cm-2 and LOD-0.005 mg/L). Given the many advantages of biosensors, we describe an optimization pipeline approach to the application of different nickel-binding biosensors for public health, nutrition, and consumer safety, which are very promising.
Collapse
Affiliation(s)
- Liliana Anchidin-Norocel
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Wesley K. Savage
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (G.G.); (S.A.)
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (G.G.); (S.A.)
| |
Collapse
|
8
|
Beardsley CA, Fuller KZ, Reilly TH, Henry CS. Method for analysis of environmental lead contamination in soils. Analyst 2021; 146:7520-7527. [PMID: 34806095 DOI: 10.1039/d1an01744f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for lead (Pb) detection in soil is presented. Pb is a dangerous environmental pollutant that is present in soils, posing a health risk to millions of people worldwide, and regular monitoring of Pb contamination in soils is essential to public health. Many sensitive methods for detection of heavy metals in solid matrices exist, but they cannot be performed on-site because they are costly (>$30 per sample), require trained personnel, and many classical sample preparation methods are not safe to bring into the field. We describe an alternative process, combining a safer sample preparation method with electrochemical analysis. The process requires minimal training, making it an attractive overall method for regular environmental screening of Pb in soils. Extract obtained from the soil is pH adjusted and analyzed using a stencil-printed carbon electrode and square wave anodic stripping voltammetry. In this work, a study of 15 neighborhood soils examining the concentration of Pb present post-extraction was performed to demonstrate the method. The limit of detection for the electrochemical analysis was calculated to be 16 ppb-well below the United States Environmental Protection Agency's action limit for Pb in soils (400 mg kg-1 or 4000 ppb)-and third party inductively coupled plasma-optical emission spectroscopy analysis validated the results obtained in this study to within ±17% on average.
Collapse
Affiliation(s)
- Chloe A Beardsley
- Access Sensor Technologies LLC, 320 E. Vine Dr. STE 221, Fort Collins, CO 80524, USA.
| | - Kai Z Fuller
- Access Sensor Technologies LLC, 320 E. Vine Dr. STE 221, Fort Collins, CO 80524, USA.
| | - Thomas H Reilly
- Access Sensor Technologies LLC, 320 E. Vine Dr. STE 221, Fort Collins, CO 80524, USA.
| | - Charles S Henry
- Access Sensor Technologies LLC, 320 E. Vine Dr. STE 221, Fort Collins, CO 80524, USA. .,Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523-1872, USA.
| |
Collapse
|
9
|
Büyükpınar Ç, San N, Komesli OT, Bakırdere S. Combination of an Efficient Photochemical Vapor Generation System and Flame Atomic Absorption Spectrophotometry for Trace Nickel Determination in Wastewater Samples. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1805749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Çağdaş Büyükpınar
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Nevim San
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Okan T. Komesli
- Department of Environmental Engineering, Atatürk University, Erzurum, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara, Turkey
| |
Collapse
|
10
|
Altunay N, Tuzen M, Hazer B, Elik A. Usage of the newly synthesized poly(3-hydroxy butyrate)-b-poly(vinyl benzyl xanthate) block copolymer for vortex-assisted solid-phase microextraction of cobalt (II) and nickel (II) in canned foodstuffs. Food Chem 2020; 321:126690. [DOI: 10.1016/j.foodchem.2020.126690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 01/27/2023]
|
11
|
Tekin Z, Unutkan T, Erulaş F, Bakırdere EG, Bakırdere S. A green, accurate and sensitive analytical method based on vortex assisted deep eutectic solvent-liquid phase microextraction for the determination of cobalt by slotted quartz tube flame atomic absorption spectrometry. Food Chem 2020; 310:125825. [DOI: 10.1016/j.foodchem.2019.125825] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
|
12
|
Mettakoonpitak J, Volckens J, Henry CS. Janus Electrochemical Paper-Based Analytical Devices for Metals Detection in Aerosol Samples. Anal Chem 2019; 92:1439-1446. [DOI: 10.1021/acs.analchem.9b04632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi 22000, Thailand
| | | | | |
Collapse
|
13
|
Borahan T, Unutkan T, Turan NB, Turak F, Bakırdere S. Determination of lead in milk samples using vortex assisted deep eutectic solvent based liquid phase microextraction-slotted quartz tube-flame atomic absorption spectrometry system. Food Chem 2019; 299:125065. [DOI: 10.1016/j.foodchem.2019.125065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/04/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
14
|
Ochab M, Gęca I, Korolczuk M. The new Micro‐set for Adsorptive Stripping Voltammetric Simultaneous Determination of Nickel and Cobalt Traces in Aqueous Media. ELECTROANAL 2019. [DOI: 10.1002/elan.201900215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mateusz Ochab
- Faculty of ChemistryMaria Curie Sklodowska University 20-031 Lublin Poland
| | - Iwona Gęca
- Faculty of ChemistryMaria Curie Sklodowska University 20-031 Lublin Poland
| | | |
Collapse
|
15
|
Sun H, Jia Y, Dong H, Fan L. Graphene oxide nanosheets coupled with paper microfluidics for enhanced on-site airborne trace metal detection. MICROSYSTEMS & NANOENGINEERING 2019; 5:4. [PMID: 31057931 PMCID: PMC6369225 DOI: 10.1038/s41378-018-0044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/04/2018] [Accepted: 12/03/2018] [Indexed: 05/29/2023]
Abstract
Rapid on-site analysis of airborne trace metals has been heavily favored over traditional methodologies because air pollutants can be altered by environmental, behavioral, and social patterns at any given time and location. However, existing portable approaches are either not capable of performing integrated on-site analysis or not yet practically applicable. Exploiting graphene oxide (GO) in enhancing the analytical performance of paper-based colorimetric detection, for the first time, this paper reports the development of a practically useful portable system for accurate, sensitive on-site characterization of trace metals in ambient particulate matter (PM). The system consists of GO-nanosheet-coated paper devices, unmanned aerial vehicle multiaxial sampling, and cellphone-based colorimetric detection. The increased specific surface area and the homogeneity of color distribution from the coating of GO improves the accuracy and sensitivity of the assays. Additionally, by leveraging a Wi-Fi camera, a self-developed app and a sample pretreatment cartridge, metal in PM samples can be readily processed and characterized on-site within 30 min. The effects of chip geometric design, pH, reaction volume, and metal interference on detection results have been studied. The detection limits of the system were calibrated to be 16.6, 5.1, and 9.9 ng for metals Fe, Cu, and Ni, respectively, which are comparable to the detection limits of commercial inductively coupled plasma (ICP) instruments, thus making our portable system practically useful. Finally, the system was used for airborne trace-metal study at 6 locations in Fuzhou City (China), and the results obtained using our system demonstrated good agreement with those obtained by the ICP. The significance of our system in supplementing air pollution study and furthering research on rapid, accurate, on-site air toxicity assessment was demonstrated.
Collapse
Affiliation(s)
- Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, 350116 Fuzhou, China
- Fujian Provincial Collaborative Innovation Center of High-End Equipment Manufacturing, 350001 Fuzhou, China
| | - Yuan Jia
- School of Mechanical Engineering, Southeast University, 210096 Nanjing, China
| | - Hui Dong
- School of Mechanical Engineering and Automation, Fuzhou University, 350116 Fuzhou, China
| | - Longxiang Fan
- School of Mechanical Engineering and Automation, Fuzhou University, 350116 Fuzhou, China
| |
Collapse
|
16
|
Holmes J, Pathirathna P, Hashemi P. Novel frontiers in voltammetric trace metal analysis: Towards real time, on-site, in situ measurements. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Özzeybek G, Alacakoç B, Kocabaş MY, Bakırdere EG, Chormey DS, Bakırdere S. Trace determination of nickel in water samples by slotted quartz tube-flame atomic absorption spectrometry after dispersive assisted simultaneous complexation and extraction strategy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:498. [PMID: 30073415 DOI: 10.1007/s10661-018-6884-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/25/2018] [Indexed: 05/24/2023]
Abstract
This study presents a new method for the determination of nickel in aqueous samples by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after a dispersive assisted simultaneous complexation and extraction (DASCE) process. Synthesized ligand was directly dissolved in the extraction solvent to eliminate the complex formation step prior to the extraction. All parameters of the SQT-FAAS and DASCE method were systematically optimized to improve the detection power of nickel for trace determinations. Under the optimum experimental conditions, the optimized method (DASCE-SQT-FAAS) recorded 137-fold enhancement in detection power over the conventional FAAS. The limits of detection and quantification were determined to be 1.6 μg/L and 5.2 μg/L, respectively. The calibration plot was linear over a wide concentration range and the precision for replicate measurements was appreciably high. Nickel was not detected in five different water samples but spiked recovery tests for three samples yielded results that were close to 100%, confirming the method's accuracy and applicability to the matrices tested.
Collapse
Affiliation(s)
- Gözde Özzeybek
- Department of Chemistry, Yıldız Technical University, 34349, İstanbul, Turkey
| | - Bihter Alacakoç
- Department of Chemistry, Yıldız Technical University, 34349, İstanbul, Turkey
| | | | | | | | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, 34349, İstanbul, Turkey.
| |
Collapse
|
18
|
Yamada K, Citterio D, Henry CS. "Dip-and-read" paper-based analytical devices using distance-based detection with color screening. LAB ON A CHIP 2018; 18:1485-1493. [PMID: 29693672 PMCID: PMC5975359 DOI: 10.1039/c8lc00168e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An improved paper-based analytical device (PAD) using color screening to enhance device performance is described. Current detection methods for PADs relying on the distance-based signalling motif can be slow due to the assay time being limited by capillary flow rates that wick fluid through the detection zone. For traditional distance-based detection motifs, analysis can take up to 45 min for a channel length of 5 cm. By using a color screening method, quantification with a distance-based PAD can be achieved in minutes through a "dip-and-read" approach. A colorimetric indicator line deposited onto a paper substrate using inkjet-printing undergoes a concentration-dependent colorimetric response for a given analyte. This color intensity-based response has been converted to a distance-based signal by overlaying a color filter with a continuous color intensity gradient matching the color of the developed indicator line. As a proof-of-concept, Ni quantification in welding fume was performed as a model assay. The results of multiple independent user testing gave mean absolute percentage error and average relative standard deviations of 10.5% and 11.2% respectively, which were an improvement over analysis based on simple visual color comparison with a read guide (12.2%, 14.9%). In addition to the analytical performance comparison, an interference study and a shelf life investigation were performed to further demonstrate practical utility. The developed system demonstrates an alternative detection approach for distance-based PADs enabling fast (∼10 min), quantitative, and straightforward assays.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | |
Collapse
|
19
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
20
|
Giordani M, Berto M, Di Lauro M, Bortolotti CA, Zoli M, Biscarini F. Specific Dopamine Sensing Based on Short-Term Plasticity Behavior of a Whole Organic Artificial Synapse. ACS Sens 2017; 2:1756-1760. [PMID: 29226668 DOI: 10.1021/acssensors.7b00542] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we demonstrate the ultrasensitive and selective detection of dopamine by means of a neuro-inspired device platform without the need of a specific recognition moiety. The sensor is a whole organic device featuring two electrodes made of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-PEDOT:PSS-patterned on a polydymethylsiloxane-PDMS-flexible substrate. One electrode is pulsed with a train of voltage square waves, to mimic the presynaptic neuron behavior, while the other is used to record the displacement current, mimicking the postsynaptic neuron. The current response exhibits the features of synaptic Short-Term Plasticity (STP) with facilitating or depressing response according to the stimulus frequency. We found that the response characteristic time υSTP depends on dopamine (DA) concentration in solution. The dose curve exhibits superexponential sensitivity at the lowest concentrations below 1 nM. The sensor detects [DA] down to 1 pM range. We assess the sensor also in the presence of ascorbic acid (AA) and uric acid (UA). Our sensor does not respond to UA, but responds to AA only at concentration above 100 μM. However, it is still able to detect DA down to 1 pM range in the presence of [AA] = 100 μM and 100 pM in the presence of [UA] = 3 μM, these values for AA and UA being the physiological levels in the cerebrospinal fluid and the striatum, respectively.
Collapse
Affiliation(s)
- Martina Giordani
- Dipartimento
di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Marcello Berto
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Dipartimento
di Scienze Biomediche e Chirurgico Specialistiche, Università di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Michele Di Lauro
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Carlo A. Bortolotti
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Center
for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Michele Zoli
- Dipartimento
di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
- Center
for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Fabio Biscarini
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Center
for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|