1
|
Zhong H, Zhang Q, Liu Z, Du J, Tao C. Ti/Ti 4O 7 Anodes for Efficient Electrodeposition of Manganese Metal and Anode Slime Generation Reduction. ACS OMEGA 2023; 8:38469-38480. [PMID: 37867691 PMCID: PMC10586254 DOI: 10.1021/acsomega.3c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
Preventing lead-based anodes from causing high-energy consumption, lead pollution, and harmful anode slime emission is a major challenge for the current electrolytic manganese metal industry. In this work, a Ti4O7-coated titanium electrode was used as anode material (Ti/Ti4O7 anode) in manganese electrowinning process for the first time and compared with a lead-based anode (Pb anode). The Ti/Ti4O7 anode was used for galvanostatic electrolysis; the cathodic current efficiency improved by 3.22% and energy consumption decreased by 7.82%. During 8 h of electrolysis, it reduced 90.42% solution anode slime and 72.80% plate anode slime formation. Anode product characterization and electrochemical tests indicated that the Ti/Ti4O7 anode possesses good oxygen evolution activity, and γ-MnO2 has a positive catalytic effect on oxygen evolution reaction (OER), which inhibited anode Mn2+ oxidation reaction and reduced the formation of anode slime. In addition, the low charge-transfer resistance, high diffusion resistance, and dense MnO2 layer of the anode blocked the diffusion path of Mn3+ in the system and inhibited the formation of anode slime. The Ti/Ti4O7 anode exhibits excellent electrochemical performance, which provides a new idea for the selection of novel anodes, energy savings and emission reduction, and the establishment of a new mode of clean production in the electrolytic manganese metal industry.
Collapse
Affiliation(s)
- Haidong Zhong
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
| | - Qian Zhang
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
| | - Zuohua Liu
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Jun Du
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
| | - Changyuan Tao
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Yang Y, Shu J, Su P, Wu H, Zhang L, Liu R, Liu Z, Chen M, Chen F, Ming X. Enhanced removal of Pb from electrolytic manganese anode slime and preparation of chemical MnO 2. ENVIRONMENTAL TECHNOLOGY 2023; 44:3741-3750. [PMID: 35481454 DOI: 10.1080/09593330.2022.2071641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Electrolytic manganese anode slime (EMAS) is produced during the production of electrolytic manganese metal. In this study, a method based on vacuum carbothermal reduction was used for Pb removal in EMAS. A Pb-removal efficiency of 99.85% and MnO purity in EMAS of 97.34 wt.% were obtained for a reduction temperature of 950°C and a carbon mass ratio of 10% for a holding time of 100 min. The dense structure of the EMAS was destroyed, a large number of multidimensional pores and cracks were formed, and the Pb-containing compound was reduced to elemental Pb by the vacuum carbothermal reduction. A recovery efficiency for chemical MnO2 of 36.6% was obtained via preparation from Pb-removed EMAS through the 'roasting-pickling disproportionation' process, with an acid washing time of 100 min, acid washing temperature of 70°C, H2SO4 concentration of 0.8 mol·L-1, liquid-solid mass ratio of 7 mL·g-1, calcination temperature of 60°C and calcination time of 2.5 h. Moreover, the crystal form of the prepared chemical MnO2 was found to be basically the same as that of electrolytic MnO2, and its specific surface area, micropore volume and discharge capacity were all higher than that of electrolytic MnO2. This study provides a new method for Pb removal and recycling for EMAS.HighlightsVacuum carbothermal reduction method was used for Pb removal in EMAS.The removal efficiency of Pb was 99.85%.Chemical MnO2 with excellent discharge performance was prepared using treated EMAS.This study provides a new method for EMAS resource utilization.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, People's Republic of China
- Daxin Manganese Mining Branch of South Manganese Group Limited, Chongzuo, People's Republic of China
- South Manganese Group Limited, Nanning, People's Republic of China
| | - Jiancheng Shu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Pengxin Su
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Haiping Wu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, People's Republic of China
| | - Renlong Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, People's Republic of China
| | - Zuohua Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, People's Republic of China
| | - Mengjun Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Faming Chen
- Daxin Manganese Mining Branch of South Manganese Group Limited, Chongzuo, People's Republic of China
| | - Xianquan Ming
- South Manganese Group Limited, Nanning, People's Republic of China
| |
Collapse
|
3
|
Zhu R, Long H, Wang Y, Xie H, Yin S, Li S. Microwave-assisted recovery of lead from electrolytic manganese anode sludge using tartaric acid and NaOH. ENVIRONMENTAL TECHNOLOGY 2023; 44:1287-1301. [PMID: 34709984 DOI: 10.1080/09593330.2021.2000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, a new metallurgical system for treating electrolytic manganese anode sludge by microwave roasting and alkaline leaching system was developed, and the lead leaching behaviour was studied. The XRD results show that Pb in anode sludge is mainly in the form of PbSO4 after microwave roasting at 850°C, as a result, the leaching rate of Pb is improved. The results show that the leaching rate of lead can reach 93.89% under the conditions of liquid-solid ratio of 7:1, leaching time of 30 min, leaching temperature of 40°C, and the concentration of sodium hydroxide of 8%. The addition of tartaric acid can further improve the lead leaching rate, FT-IR analysis showed that the coordination form of lead and tartaric acid. Lead and tartaric acid ions (L) form three coordination compounds, PbL, Pb2L2 and Pb2L3, which can only exist in alkaline solution.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, People's Republic of China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Hailin Long
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, People's Republic of China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yongmi Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, People's Republic of China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Huimin Xie
- School of Metallurgy and Environment, Central South University, Changsha, People's Republic of China
| | - Shaohua Yin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, People's Republic of China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Shiwei Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, People's Republic of China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
4
|
Hydroxylation of electrolytic manganese anode slime with EDTA-2Na and its adsorption of methylene blue. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Zhou X, Luo C, Wang J, Wang H, Chen Z, Wang S, Chen Z. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143120. [PMID: 33127126 DOI: 10.1016/j.scitotenv.2020.143120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Electrolytic manganese anode slag (EMAS) is the waste residue produced by electrolytic manganese metal industry. At present, no mature recycling system has been established, which causes a waste of resources and threatens the environment. Therefore, the resource utilization of EMAS has attracted increased attention. In this paper, the in-situ resource utilization of EMAS can be realized by pickling treatment was reported. Specifically, EMAS after pickling treatment (PEMAS) was first used as catalyst to activate PMS to degrade tetrachlorophenol (4-CP). Pickling could remove the inert inorganic components on EMAS and increase the specific surface area, pore volume and Mn distribution of the catalyst, thus improving the catalytic performance of the catalyst. Under the conditions of 4-CP of 40 ppm, PMS of 1 mM and PEMAS of 0.3 g L-1, 85% of 4-CP could be degraded within 50 min. Mechanism studies proved that the main active species were O2- and 1O2. Some O2- contributed to the generation of 1O2 and some O2- directly contributed to the degradation of 4-CP. During the reaction, the valence state of Mn transformed between Mn(III)/Mn(IV) and Mn(II)/Mn(III) and kept the cycle. Moreover, PEMAS/PMS system exhibited excellent independence of the solution pH, resistance to the versatile inorganic ions and background organic matters, and stability of recycling. In a word, this study has achieved the resource utilization of EMAS and the goal of treating waste with waste, which is a win-win strategy of economic and environmental benefits.
Collapse
Affiliation(s)
- Xinquan Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, PR China
| | - Chunguang Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, PR China
| | - Jia Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, PR China
| | - Huabin Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, PR China
| | - Zhulei Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, PR China
| | - Songlin Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Guo P, Wang S, Zhang L, Xu L, Sun W. Optimization of the synergy between reduction leaching of manganese anode slime and oxidation pretreatment of refractory gold ore by response surface methodology. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Deng R, Xie Z, Liu Z, Tao C. Leaching kinetics of vanadium catalyzed by electric field coupling with sodium persulfate. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|