1
|
Liu Y, Xu J, Wu Z, Cai Y, Zhao Z, Qiu J. Development of a fluorescent DNA sensor for dual detection of heavy metal ions utilising DAPI in distinct buffers. Food Chem 2024; 451:139390. [PMID: 38653103 DOI: 10.1016/j.foodchem.2024.139390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The DNA-based biosensor utilises a thymine/guanine(T/G)-rich ODN-4 scaffold with 4',6-diamidino-2-phenylindole(DAPI) as a fluorescent emissary to monitor mercury/lead(Hg(II)/Pb(II)) ions simultaneously. Key to its bifocal detection capability is the twin unbound cytosine(C) bases strategically bridging the G-quadruplex and T-rich sequences, enabling their synergistic interplay. It facilitates the recognition of Hg(II)/Pb(II) ions, characterised by high specificity, and effectively mitigates interference from silver(Ag(I)). The G-quadruplex, guided by the C bases, induces a conformational transition in T-Hg(II)-T complexes, resulting in intense fluorescence. Pb(II) causes a spatial shift in the G-quadruplex, relaxing the T-Hg(II)-T base pairs and attenuating the fluorescence signal. The ODN-4 exhibits a robust, linear correlation with Hg(II) concentration (4.09 nmol/L to 1000 nmol/L) and Pb(II) concentration (3.22 nmol/L to 5 μmol/L). Recovery rates in milk, tap water, and rice water specimens with both ions validate method accuracy (Hg(II): 95.19% to 104.68%, Pb(II): 98.20% to 103.46%). It holds promising prospects for practical food analysis.
Collapse
Affiliation(s)
- Yuxin Liu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxuan Xu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ziyi Wu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yule Cai
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zihan Zhao
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jieqiong Qiu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Musikavanhu B, Liang Y, Xue Z, Feng L, Zhao L. Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals. Molecules 2023; 28:6960. [PMID: 37836803 PMCID: PMC10574220 DOI: 10.3390/molecules28196960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Toxic cations, including heavy metals, pose significant environmental and health risks, necessitating the development of reliable detection methods. This review investigates the techniques and approaches used to strengthen the sensitivity and selectivity of Schiff base fluorescent chemosensors designed specifically to detect toxic and heavy metal cations. The paper explores a range of strategies, including functional group variations, structural modifications, and the integration of nanomaterials or auxiliary receptors, to amplify the efficiency of these chemosensors. By improving selectivity towards targeted cations and achieving heightened sensitivity and detection limits, consequently, these strategies contribute to the advancement of accurate and efficient detection methods while increasing the range of end-use applications. The findings discussed in this review offer valuable insights into the potential of leveraging Schiff base fluorescent chemosensors for the accurate and reliable detection and monitoring of heavy metal cations in various fields, including environmental monitoring, biomedical research, and industrial safety.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China;
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.M.); (Y.L.); (Z.X.)
| |
Collapse
|
3
|
Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Jalali Sarvestani MR, Madrakian T, Afkhami A. Simultaneous determination of Pb2+ and Hg2+ at food specimens by a Melamine-based covalent organic framework modified glassy carbon electrode. Food Chem 2023; 402:134246. [DOI: 10.1016/j.foodchem.2022.134246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
5
|
Liu X, Wu L, Yu X, Peng H, Xu S, Zhou Z. In-Situ Growth of Graphene Films to Improve Sensing Performances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7814. [PMID: 36363409 PMCID: PMC9653576 DOI: 10.3390/ma15217814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Graphene films made by chemical vapor deposition (CVD) are a popular method to modify sensors by virtue of large-scale and reproducibility, but suffer from various surface contamination and structural defects induced during transfer procedures. In-situ growth of graphene films is proposed in this review article to improve sensing performance. Root causes of the surface contamination and structural defects are revealed with several common transfer methods. In-situ approaches are introduced and compared, growing graphene films with clean surfaces and few defects. This allows graphene film to display superior sensing performance for sensor applications. This work may reasonably be expected to offer a good avenue for synthesis of graphene films applicable for sensing applications.
Collapse
|
6
|
Nodehi M, Baghayeri M, Kaffash A. Application of BiNPs/MWCNTs-PDA/GC sensor to measurement of Tl (1) and Pb (II) using stripping voltammetry. CHEMOSPHERE 2022; 301:134701. [PMID: 35472613 DOI: 10.1016/j.chemosphere.2022.134701] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Herein, simultaneous determination of Tl (1) and Pb (II) has been carried out at the surface of a modified glassy carbon electrode with polydopamine functionalized multi-walled carbon nanotubes- BiNPs nanocomposite (BiNPs/MWCNTs-PDA/GC) using square-wave anodic stripping voltammetry (SWASV) technique. The morphologies, composition and, electrochemical properties of the BiNPs/MWCNTs-PDA/GC were characterized by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDX), electrochemical impedance spectroscopy (EIS) and, SWASV. The parameters affecting the stripping current response were investigated and optimized. The large specific area of MWCNTs and good electro-conductibility of BiNPs causes the BiNPs/MWCNTs-PDA/GC electrode to exhibit an excellent electro-catalytic effect with good separation peaks for Tl and Pb oxidation compared to bare GCE under the optimal conditions. The proposed sensor showed wide leaner ranges from 0.4-100 ppb and 100-400 ppb for Tl (I) and Pb (II). Low detection limits of 0.04 ppb for Tl (I) and 0.07 ppb for Pb (II) were achieved. The efficiency of the electrode after thirty days of storage in ambient conditions without using it and also with the ability to reuse for 16 days did not decrease significantly. In addition, the modified electrode with simple preparation method showed good reproducibility, and high selectivity for measuring target ions. The method was successfully implemented for the simultaneous determination of Tl (I) and Pb (II) in tap, mineral and waste water samples with acceptable recovery (from 99.1-103.2 for Tl (I) and 98.4-100.4 for Pb (II)).
Collapse
Affiliation(s)
- Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| | - Afsaneh Kaffash
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
7
|
Affiliation(s)
- Beant Kaur Billing
- University Centre for Research and Development Chandigarh University Gharuan Mohali 140413 India
| |
Collapse
|
8
|
Tajik S, Beitollahi H, Nejad FG, Shoaie IS, Khalilzadeh MA, Asl MS, Van Le Q, Zhang K, Jang HW, Shokouhimehr M. Recent developments in conducting polymers: applications for electrochemistry. RSC Adv 2020; 10:37834-37856. [PMID: 35515168 PMCID: PMC9057190 DOI: 10.1039/d0ra06160c] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal. Because of their multifunctional characteristics, e.g., simplistic synthesis, acceptable environmental stability, beneficial optical, electronic, and mechanical features, researchers have largely considered them for diverse applications. Therefore, their capability of catalyzing several electrode reactions has been introduced as one of their significant features. A thin layer of the conducting polymer deposited on the substrate electrode surface can augment the electrode process kinetics of several solution species. Such electrocatalytic procedures with modified conducting polymer electrodes can create beneficial utilization in diverse fields of applied electrochemistry. This review article explores typical recent applications of conductive polymers (2016–2020) as active electrode materials for energy storage applications, electrochemical sensing, and conversion fields such as electrochemical supercapacitors, lithium-ion batteries, fuel cells, and solar cells. Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal.![]()
Collapse
|
9
|
Sangeetha Selvan K, Sriman Narayanan S. Synthesis, structural characterization and electrochemical studies switching of MWCNT/novel tetradentate ligand forming metal complexes on PIGE modified electrode by using SWASV. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:657-665. [DOI: 10.1016/j.msec.2018.12.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/09/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
10
|
Oiye ÉN, Ribeiro MFM, Katayama JMT, Tadini MC, Balbino MA, Eleotério IC, Magalhães J, Castro AS, Silva RSM, da Cruz Júnior JW, Dockal ER, de Oliveira MF. Electrochemical Sensors Containing Schiff Bases and their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review. Crit Rev Anal Chem 2019; 49:488-509. [PMID: 30767567 DOI: 10.1080/10408347.2018.1561242] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Schiff bases and their transition metal complexes are inexpensive and easy to synthesize. These compounds display several structural and electronic features that allow their application in numerous research fields. Over the last three decades, electroanalytical scientists of various areas have developed electrochemical sensors from many compounds. The present review discusses the applicability of Schiff bases, their transition metal complexes and new materials containing these compounds as electrode modifiers in sensors to detect analytes of forensic, pharmaceutical and environmental interest. In forensic sciences, Schiff bases are mainly used to analyze illicit drugs: chemical reactions involving Schiff bases can help to elucidate illicit drug production and to determine analytes in seized samples. In the environmental area, given that most methodologies provide Limit of Detection (LOD) values below the values recommended by regulatory agencies, Schiff bases constitute a promising strategy. As for pharmaceutical applications, Schiff bases represent an approach for analysis of complex biological samples containing low levels of the target analytes in the presence of a large quantity of interfering compounds. This review will show that new highly specific materials can be synthesized based on Schiff bases and applied in the pharmaceutical industry, toxicological studies, electrocatalysis and biosensors. Most literature papers have reported on Schiff bases combined with carbon paste to give a chemically modified electrode that is easy and inexpensive to produce and which displays specific and selective sensing capacity for different applications.
Collapse
Affiliation(s)
- Érica Naomi Oiye
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Maria Fernanda Muzetti Ribeiro
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Juliana Midori Toia Katayama
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Maraine Catarina Tadini
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Marco Antonio Balbino
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Izabel Cristina Eleotério
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Juliana Magalhães
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Alex Soares Castro
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Ricardo Soares Mota Silva
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - José Wilmo da Cruz Júnior
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina , Blumenau , Santa Catarina , Brasil
| | - Edward Ralph Dockal
- Departamento de Química - Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos , São Carlos , São Paulo , Brasil
| | - Marcelo Firmino de Oliveira
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| |
Collapse
|
11
|
Gayathri J, Selvan KS, Narayanan SS. A novel sensor for the determination of Hg2+ in waters based on octadentate ligand immobilized multi-walled carbon nanotube attached to paraffin wax impregnated graphite electrodes (PIGE). J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3984-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Gayathri J, Selvan KS, Narayanan SS. Fabrication of carbon nanotube and synthesized Octadentate ligand modified electrode for determination of Hg (II) in Sea water and Lake water using square wave anodic stripping voltammetry. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|