1
|
Kityk A, Pavlik V, Hnatko M. Breaking barriers in electrodeposition: Novel eco-friendly approach based on utilization of deep eutectic solvents. Adv Colloid Interface Sci 2024; 334:103310. [PMID: 39393255 DOI: 10.1016/j.cis.2024.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
This review article provides a comprehensive examination of the innovative approaches emerging from using deep eutectic solvents (DESs) in electrodeposition techniques. Through an in-depth exploration of fundamental principles, the study highlights the advantages of DESs as electrolytes, including reduced toxicity, enhanced control over deposition parameters, and specific influences on morphology. By showcasing specific studies and experimental findings, the article offers tangible evidence of the superior performance of DES-based electrodeposition methods. Key findings reveal that DESs utilization enables eco-friendly electrodeposition of noble metal and transition metal coatings, coatings of their alloys and composites, as well as electrodeposition of semiconductor and photovoltaic alloy coatings; while also addressing challenges such as hydrogen evolution in conventional electrolytes. Notably, DES-based electrolytes facilitate the formation of electrodeposits with unique nanostructures and improve the stability of colloidal systems for composite coatings. The article contains invaluable tables detailing electrolyte compositions, electrodeposition conditions, and deposition results for a diverse array of metals, alloys, and composites, serving as a practical handbook for researchers and industry practitioners. In conclusion, the review underscores the transformative impact of DESs on electrodeposition techniques and emphasizes the prospects for future advancements in surface modification and material synthesis.
Collapse
Affiliation(s)
- A Kityk
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta, 9, Bratislava 84536, Slovak Republic; Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta, 5807/9, Bratislava 84511, Slovak Republic.
| | - V Pavlik
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta, 9, Bratislava 84536, Slovak Republic; Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta, 5807/9, Bratislava 84511, Slovak Republic
| | - M Hnatko
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta, 9, Bratislava 84536, Slovak Republic; Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta, 5807/9, Bratislava 84511, Slovak Republic
| |
Collapse
|
2
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
3
|
Doucet M, Candeago R, Wang H, Browning JF, Su X. Studying Transient Phenomena in Thin Films with Reinforcement Learning. J Phys Chem Lett 2024; 15:4444-4450. [PMID: 38626466 DOI: 10.1021/acs.jpclett.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Neutron reflectometry has long been a powerful tool to study the interfacial properties of energy materials. Recently, time-resolved neutron reflectometry has been used to better understand transient phenomena in electrochemical systems. Those measurements often comprise a large number of reflectivity curves acquired over a narrow q range, with each individual curve having lower information content compared to a typical steady-state measurement. In this work, we present an approach that leverages existing reinforcement learning tools to model time-resolved data to extract the time evolution of structure parameters. By mapping the reflectivity curves taken at different times as individual states, we use the Soft Actor-Critic algorithm to optimize the time series of structure parameters that best represent the evolution of an electrochemical system. We show that this approach constitutes an elegant solution to the modeling of time-resolved neutron reflectometry data.
Collapse
Affiliation(s)
- Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Riccardo Candeago
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hanyu Wang
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James F Browning
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Pinheiro DML, Bezerra LL, Alcanfor AAC, Feitosa FX, Monteiro NKV, Correia AN, de Lima Neto P, de Sant'Ana HB. Ag+ ion in choline chloride and glycerol mixture: Evaluation of electrochemical properties and molecular modelling approaches. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Sanchez-Fernandez A, Jackson AJ, Prévost SF, Doutch JJ, Edler KJ. Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents. J Am Chem Soc 2021; 143:14158-14168. [PMID: 34459188 PMCID: PMC8431340 DOI: 10.1021/jacs.1c04781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/31/2022]
Abstract
While the traditional consensus dictates that high ion concentrations lead to negligible long-range electrostatic interactions, we demonstrate that electrostatic correlations prevail in deep eutectic solvents where intrinsic ion concentrations often surpass 2.5 M. Here we present an investigation of intermicellar interactions in 1:2 choline chloride:glycerol and 1:2 choline bromide:glycerol using small-angle neutron scattering. Our results show that long-range electrostatic repulsions between charged colloidal particles occur in these solvents. Interestingly, micelle morphology and electrostatic interactions are modulated by specific counterion condensation at the micelle interface despite the exceedingly high concentration of the native halide from the solvent. This modulation follows the trends described by the Hofmeister series for specific ion effects. The results are rationalized in terms of predominant ion-ion correlations, which explain the reduction in the effective ionic strength of the continuum and the observed specific ion effects.
Collapse
Affiliation(s)
| | - Andrew J. Jackson
- European
Spallation Source, Box
176, 221 00 Lund, Sweden
- Department
of Physical Chemistry, Lund University, Lund, SE-221 00, Sweden
| | | | - James J. Doutch
- ISIS
Neutron and Muon Source, Science and Technology
Facilities Council, Rutherford Appleton
Laboratory, Didcot, OX11 0QX, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
| |
Collapse
|
6
|
Hammond OS, Atri RS, Bowron DT, de Campo L, Diaz-Moreno S, Keenan LL, Doutch J, Eslava S, Edler KJ. Structural evolution of iron forming iron oxide in a deep eutectic-solvothermal reaction. NANOSCALE 2021; 13:1723-1737. [PMID: 33428701 DOI: 10.1039/d0nr08372k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep eutectic solvents (DES) and their hydrated mixtures are used for solvothermal routes towards greener functional nanomaterials. Here we present the first static structural and in situ studies of the formation of iron oxide (hematite) nanoparticles in a DES of choline chloride : urea where xurea = 0.67 (aka. reline) as an exemplar solvothermal reaction, and observe the effects of water on the reaction. The initial speciation of Fe3+ in DES solutions was measured using extended X-ray absorption fine structure (EXAFS), while the atomistic structure of the mixture was resolved from neutron and X-ray diffraction and empirical potential structure refinement (EPSR) modelling. The reaction was monitored using in situ small-angle neutron scattering (SANS), to determine mesoscale changes, and EXAFS, to determine local rearrangements of order around iron ions. It is shown that iron salts form an octahedral [Fe(L)3(Cl)3] complex where (L) represents various O-containing ligands. Solubilised Fe3+ induced subtle structural rearrangements in the DES due to abstraction of chloride into complexes and distortion of H-bonding around complexes. EXAFS suggests the complex forms [-O-Fe-O-] oligomers by reaction with the products of thermal hydrolysis of urea, and is thus pseudo-zero-order in iron. In the hydrated DES, the reaction, nucleation and growth proceeds rapidly, whereas in the pure DES, the reaction initially proceeds quickly, but suddenly slows after 5000 s. In situ SANS and static small-angle X-ray scattering (SAXS) experiments reveal that nanoparticles spontaneously nucleate after 5000 s of reaction time in the pure DES before slow growth. Contrast effects observed in SANS measurements suggest that hydrated DES preferentially form 1D particle morphologies because of choline selectively capping surface crystal facets to direct growth along certain axes, whereas capping is restricted by the solvent structure in the pure DES.
Collapse
Affiliation(s)
- Oliver S Hammond
- Department of Chemistry and Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sousa NG, Sousa CP, Campos OS, de Lima-Neto P, Correia AN. One-step preparation of silver electrodeposits from non-aqueous solvents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Welbourn R, Clarke S. New insights into the solid–liquid interface exploiting neutron reflectivity. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Hillman AR, Barker R, Dalgliesh RM, Ferreira VC, Palin EJR, Sapstead RM, Smith EL, Steinke NJ, Ryder KS, Ballantyne AD. Real-time in situ dynamic sub-surface imaging of multi-component electrodeposited films using event mode neutron reflectivity. Faraday Discuss 2018; 210:429-449. [DOI: 10.1039/c8fd00084k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the deposition, evolution and dissolution of single and two-component metal layers on Au substrates immersed in the deep eutectic solvent Ethaline.
Collapse
Affiliation(s)
- A. Robert Hillman
- Materials Centre
- Department of Chemistry
- University of Leicester
- Leicester LE1 7RH
- UK
| | - Robert Barker
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | | | - Virginia C. Ferreira
- Centro de Química e Bioquímica
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisbon
- Portugal
| | - Emma J. R. Palin
- Materials Centre
- Department of Chemistry
- University of Leicester
- Leicester LE1 7RH
- UK
| | - Rachel M. Sapstead
- Materials Centre
- Department of Chemistry
- University of Leicester
- Leicester LE1 7RH
- UK
| | - Emma L. Smith
- Department of Chemistry
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | | | - Karl S. Ryder
- Materials Centre
- Department of Chemistry
- University of Leicester
- Leicester LE1 7RH
- UK
| | - Andrew D. Ballantyne
- Materials Centre
- Department of Chemistry
- University of Leicester
- Leicester LE1 7RH
- UK
| |
Collapse
|