1
|
Wilson LA, Melville JN, Pedroso MM, Krco S, Hoelzle R, Zaugg J, Southam G, Virdis B, Evans P, Supper J, Harmer JR, Tyson G, Clark A, Schenk G, Bernhardt PV. Kinetic, electrochemical and spectral characterization of bacterial and archaeal rusticyanins; unexpected stability issues and consequences for applications in biotechnology. J Inorg Biochem 2024; 256:112539. [PMID: 38593609 DOI: 10.1016/j.jinorgbio.2024.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.
Collapse
Affiliation(s)
- Liam A Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jamie N Melville
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Julian Zaugg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gordon Southam
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Evans
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jenna Supper
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey R Harmer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gene Tyson
- Centre for Microbiome Research, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Abstract
Bioelectrocatalysis has become one of the most important research fields in electrochemistry and provided a firm base for the application of important technology in various bioelectrochemical devices, such as biosensors, biofuel cells, and biosupercapacitors. The understanding and technology of bioelectrocatalysis have greatly improved with the introduction of nanostructured electrode materials and protein-engineering methods over the last few decades. Recently, the electroenzymatic production of renewable energy resources and useful organic compounds (bioelectrosynthesis) has attracted worldwide attention. In this review, we summarize recent progress in the applications of enzymatic bioelectrocatalysis.
Collapse
|
6
|
Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 2019; 35:60. [PMID: 30919119 DOI: 10.1007/s11274-019-2632-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.
Collapse
Affiliation(s)
- Yue Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Mengran Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Jiangong Duan
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, Gansu Province, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China. .,College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China.
| |
Collapse
|