1
|
Zhang Z, Huang L, Gao F, Zheng Z, Lin Y, Wang S, Wang Q, Wang Q. A ratiometric electrochemical sensor for antiepileptic drug of carbamazepine based on electroactive Ni 2+-terephthalic acid MOF. Talanta 2025; 292:128019. [PMID: 40147083 DOI: 10.1016/j.talanta.2025.128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Carbamazepine (CBZ), an anticonvulsant and mood stabilizer used extensively for epilepsy, requires a reliable and sensitive monitoring assay for assessing and optimizing the dosage administered to epileptic patients. In this work, spherical nickel-based metal-organic framework materials (Ni-MOFs) consisting of nanosheets were synthesized and cast on glassy carbon electrode (GCE) to prepare a novel ratiometric CBZ electrochemical sensor. The electrochemical test results showed that the Ni-MOF-based sensor had a pair of reversible redox peaks at +0.54 V and +0.39 V, respectively, originating from the Ni3+/Ni2+ pair. Meanwhile, CBZ presented an intense irreversible oxidation peak at +1.22 V on the sensor, and its peak current intensity was significantly higher than that on bare GCE and Nafion/GCE. This enhancement can be ascribed to the synergistic effects of the extensive electroactive surface area and the superior electron transfer kinetics of the Ni-MOF, as evidenced by comprehensive physical and electrochemical characterizations. Further, ratiometric sensing detection of CBZ can be achieved by measuring the ratio (R) of oxidation peak currents between CBZ and Ni-MOF, using the Ni-MOF's oxidation peak as the internal reference signal. Under the optimal experimental conditions, the sensor can detect CBZ in the concentration range from 20 to 300 μM with the detection limit as low as 1.03 μM. The recoveries of 94.2-103.3 % were obtained when the sensor was used for the determination of CBZ in serum samples, which demonstrated that the sensor has potential applications in the monitoring of CBZ residues in biological samples.
Collapse
Affiliation(s)
- Zhaoyi Zhang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Ling Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Feng Gao
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China; Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou, 571158, PR China.
| | - Zhenan Zheng
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Yiyang Lin
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Sifan Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Qinghua Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Qingxiang Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China.
| |
Collapse
|
2
|
Recent advances in electrochemical screening of tricyclic drug carbamazepine: A mini-review. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Chung S, Singh NK, Gribkoff VK, Hall DA. Electrochemical Carbamazepine Aptasensor for Therapeutic Drug Monitoring at the Point of Care. ACS OMEGA 2022; 7:39097-39106. [PMID: 36340178 PMCID: PMC9631757 DOI: 10.1021/acsomega.2c04865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Monitoring the anti-epileptic drug carbamazepine (CBZ) is crucial for proper dosing, optimizing a patient's clinical outcome, and managing their medication regimen. Due to its narrow therapeutic window and concentration-related toxicity, CBZ is prescribed and monitored in a highly personalized manner. We report an electrochemical conformation-changing aptasensor with two assay formats: a 30 min assay for routine monitoring and a 5 min assay for rapid emergency testing. To enable "sample-to-answer" testing, a de novo CBZ aptamer (K d < 12 nM) with conformational switching due to a G-quadruplex motif was labeled with methylene blue and immobilized on a gold electrode. The electrode fabrication and detection conditions were optimized using electrochemical techniques and visualized by atomic force microscopy (AFM). The aptasensor performance, including reproducibility, stability, and interference, was characterized using electrochemical impedance spectroscopy and voltammetry techniques. The aptasensor exhibited a wide dynamic range in buffer (10 nM to 100 μM) with limits of detection of 1.25 and 1.82 nM for the 5 and 30 min assays, respectively. The clinical applicability is demonstrated by detecting CBZ in finger prick blood samples (<50 μL). The proposed assays provide a promising method to enable point-of-care monitoring for timely personalized CBZ dosing.
Collapse
Affiliation(s)
- Saeromi Chung
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Naveen K. Singh
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Drew A. Hall
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department
of Bioengineering, University of California
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Natesan M, Subramaniyan P, Chen TW, Chen SM, Ajmal Ali M, Al-Zaqri N. Ceria-doped zinc oxide nanorods assembled into microflower architectures as electrocatalysts for sensing of piroxicam in urine sample. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Hammoud A, Assaf H, Savaria Y, Nguyen DK, Sawan M. A Molecular Imprinted PEDOT CMOS Chip-Based Biosensor for Carbamazepine Detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:15-23. [PMID: 34962875 DOI: 10.1109/tbcas.2021.3138942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A miniaturized biosensor for carbamazepine (CBZ) detection and quantification was designed, implemented and fabricated. The 1×1 mm2 CMOS chip was packaged and coupled with a 3-electrode electrochemical cell. A complete characterization of the sensor was conducted via two steps: 1) Molecular imprinting of PEDOT polymer sites by cyclic voltammetry (CV) on glassy carbon electrode (GCE) surfaces; and 2) Quantification of CBZ solutions through both CV, and a current peak detection circuitry. The proposed biosensor offered high-selectivity and high-sensitivity to CBZ molecules. Scanning electron microscopy (SEM) was utilized to validate the synthesis of the PEDOT chains. CBZ removal from the imprinted polymer was conducted through soaking the modified GCEs in acetonitrile (ACN). Extraction was then confirmed by ultraviolet-visible (UV-vis) spectroscopy and CV analyzing data from pre- and post-template extraction. Furthermore, in order to characterize the electrodes' response to CBZ levels in phosphate buffered solution (PBS) with [Fe(CN)6]3-/4- as a redox pair/mediator, CV and peak detection was conducted resulting in redox peak currents vs. CBZ concentration graphs. The limits of detection (LOD) and quantification (LOQ) were calculated to be 2.04 and 6.2 μg/mL respectively. Finally, selectivity towards CBZ was validated by studying the effect of valproic acid (VPA) and phenytoin (PHT) on the biosensor's performance. The proposed biosensor is highly sensitive and selective to CBZ molecules, simple to construct and easy to operate.
Collapse
|
6
|
Ultrasensitive detection and removal of carbamazepine in wastewater using UCNPs functionalized with thin-shell MIPs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Tarahomi S, Rounaghi GH, Daneshvar L, Eftekhari M. A Carbon Ionic Liquid Paste Sensor Modified with Lanthanum Nanorods /MWCNTs/Nafion Hybrid Composite for Carbamazepine Screening in Biological and Pharmaceutical Media. ChemistrySelect 2021. [DOI: 10.1002/slct.202102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Somayeh Tarahomi
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | | | - Leili Daneshvar
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Eftekhari
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
8
|
Dhanalakshmi N, Priya T, Thennarasu S, Sivanesan S, Thinakaran N. Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing. J Pharm Anal 2021; 11:48-56. [PMID: 33717611 PMCID: PMC7930633 DOI: 10.1016/j.jpha.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite (glutathione-GO/ZnO) as electrode material for the high-performance piroxicam sensor. The prepared glutathione-GO/ZnO nanocomposite was well characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The novel nanocomposite modified electrode showed the highest electrocatalytic activity towards piroxicam (oxidation potential is 0.52 V). Under controlled experimental parameters, the proposed sensor exhibited good linear responses to piroxicam concentrations ranging from 0.1 to 500 μM. The detection limit and sensitivity were calculated as 1.8 nM and 0.2 μA/μM·cm2, respectively. Moreover, it offered excellent selectivity, reproducibility, and long-term stability and can effectively ignore the interfering candidates commonly existing in the pharmaceutical tablets and human fluids even at a higher concentration. Finally, the reported sensor was successfully employed to the direct determination of piroxicam in practical samples.
Collapse
Affiliation(s)
- N. Dhanalakshmi
- Environmental Research Lab, PG and Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, 630 003, Tamil Nadu, India
| | - T. Priya
- Environmental Research Lab, PG and Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, 630 003, Tamil Nadu, India
| | - S. Thennarasu
- School of Chemistry, Bharathidasan University, Thiruchirapalli, 620 024, Tamil Nadu, India
| | - S. Sivanesan
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, 25, India
| | - N. Thinakaran
- Environmental Research Lab, PG and Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
9
|
Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2020; 221:121610. [PMID: 33076140 DOI: 10.1016/j.talanta.2020.121610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotropes including carbon nanotubes and graphenes have been widely used for development of different Nano-biosensors for a diverse list of analytes because of their great physiochemical features such as high tensile strength, ultra-light weight, unique electronic construction, high thermo-chemical stability, and an appropriate capacity for electron transfer. Because of these exceptional properties, scientists have developed an immense interest in these nanomaterials. In this case, there are important reports to show the effective Nano-carbon based biosensors in the detection of NTI drugs and the present review will critically summarize the available data in this field.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
10
|
rGO/ZnO/Nafion nanocomposite as highly sensitive and selective amperometric sensor for detecting nitrite ions (NO2−). J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Ezhil Vilian AT, Kang SM, Yeong Oh S, Woo Oh C, Umapathi R, Suk Huh Y, Han YK. A simple strategy for the synthesis of flower-like textures of Au-ZnO anchored carbon nanocomposite towards the high-performance electrochemical sensing of sunset yellow. Food Chem 2020; 323:126848. [PMID: 32330645 DOI: 10.1016/j.foodchem.2020.126848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Consumption of sunset yellow (SY) above a certain concentration through food products may leads to adverse health issues. Therefore, it is imperative to develop technologies for rapid and selective detection of SY. Herein, a flower-like reduced graphene oxide (rGO)-graphitic carbon nitride (g-CN)/ZnO-Au nanoparticle (NPs) has been prepared and utilized for the specific detection of SY. The fabricated rGO-g-CN/ZnO-AuNPs composite was characterized and investigated by XRD, FTIR, SEM, TEM, XPS, EIS, and voltammetry techniques. Characterization techniques elucidated the deposition of ZnO-AuNPs on to the rGO-g-CN and successful fabrication of rGO-g-CN/ZnO-AuNPs composite. rGO-g-CN/ZnO-AuNPs composite possesses excellent catalytic activity for the oxidation of SY. Developed rGO-g-CN/ZnO-AuNPs sensor exhibits LOD of 1.34 nM for SY concentrations ranging from 5 to 85 nM. Noteworthily, the sensor has been successfully employed for the detection and recovery of SY in real-time samples. Fabricated composite opens up new avenues to develop electrochemical sensor for food safety.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Sung-Min Kang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seo Yeong Oh
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Cheol Woo Oh
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Reddicherla Umapathi
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
| |
Collapse
|
12
|
3D cloves bud like Gd doped ZnO strewn rGO hybrid for highly selective determination of l-dopa in the presence of carbidopa and ascorbic acid. J Pharm Biomed Anal 2019; 174:182-190. [PMID: 31174129 DOI: 10.1016/j.jpba.2019.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
An electrochemical sensor using three dimensional (3D) cloves bud like gadolinium doped ZnO nanoflowers strewn reduced graphene oxide (GZO@rGO) modified glassy carbon electrode was proposed for the sensitive and selective detection of l-dopa. The GZO@rGO nanocomposite was synthesized by hydrothermal method and characterized by a variety of analytical and spectroscopy techniques, viz. Field Emission Scanning Electron Microscopy, X-Ray Diffraction, Fourier Transformed Infrared Spectrum and X-ray photoelectron spectroscopy. The electrochemical characterization was evaluated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV). The 3D cloves bud like GZO@rGO hybrid displayed the highest electro-catalytic behaviour for the selective l-dopa detection. Under optimum conditions, the oxidation current response of l-dopa is directly proportional to its concentration ranging from 10 to 100 nM. The sensitivity and limit of detection was calculated as 0.1 μA nM-1 cm-2 and 0.82 nM respectively. Moreover, the proposed electrode offers excellent selectivity, because it can efficiently evade the intervention of carbidopa and ascorbic acid even in the higher concentration. Thus, the reported sensor exhibits accurate determination of l-dopa (in the presence of carbidopa & ascorbic acid) and possesses an excellent real-time application with Mucuna prurita, pharmaceutical and human urine samples.
Collapse
|
13
|
Mohiuddin I, Berhanu AL, Malik AK, Aulakh JS, Lee J, Kim KH. Preparation and evaluation of a porous molecularly imprinted polymer for selective recognition of the antiepileptic drug carbamazepine. ENVIRONMENTAL RESEARCH 2019; 176:108580. [PMID: 31400619 DOI: 10.1016/j.envres.2019.108580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/01/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
A novel and porous molecularly imprinted polymer (PMIP) was synthesized and used as a solid-phase extraction adsorbent for preconcentration of carbamazepine (CBZ) prior to its quantitation by high-performance liquid chromatography (HPLC) in various sample forms (e.g., drinking water, river water, hospital wastewater, and pharmaceuticals). PMIP-CBZ was applied to a polymerization process in which polystyrene spheres were coated with a silica layer. Removal of polystyrene spheres and formation of porous silica facilitated the recovery of CBZ (99.4%) during the extraction process. Site accessibility to the surface of PMIP-CBZ increased the density of high-recognition sites. PMIP-CBZ was characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. The key variables influencing the extraction efficiency of PMIP (e.g., adsorbent loading, eluent type, eluent volume, reusability of the adsorbent, and cross-reactivity) were optimized. The optimized protocol was successfully employed to quantify CBZ with limit of detection and limit of quantification as 0.082 and 0.270 ng/mL, respectively (linear detection range: 0.5-250 ng/mL and a relative standard deviation: < 5%). Use of the PMIP adsorbent resulted in a sensitive and stable method for efficiently quantitation of CBZ from various real sample matrices.
Collapse
Affiliation(s)
- Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | | | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | | | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
14
|
Dhanalakshmi N, Priya T, Thennarasu S, Karthikeyan V, Thinakaran N. Effect of La doping level on structural and sensing properties of LZO/RGO nanohybrid: Highly selective sensing platform for isoprenaline determinations in the presence of ascorbic acid, uric acid and folic acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|