1
|
Verma S, Sen A, Dutta N, Sengupta P, Chakraborty P, Dutta G. Highly Specific Non-Enzymatic Electrochemical Sensor for the Detection of Uric Acid Using Carboxylated Multiwalled Carbon Nanotubes Intertwined with GdS-Gd 2O 3 Nanoplates in Human Urine and Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21427-21441. [PMID: 39356148 DOI: 10.1021/acs.langmuir.4c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Herein, the electrochemical sensing efficacy of carboxylic acid functionalized multiwalled carbon nanotubes (C-MWCNT) intertwined with coexisting phases of gadolinium monosulfide (GdS) and gadolinium oxide (Gd2O3) nanosheets is explored for the first time. The nanocomposite demonstrated splendid specificity for nonenzymatic electrochemical detection of uric acid (UA) in biological samples. It was synthesized using the coprecipitation method and thoroughly characterized. The presence of functional groups and disorder in the as-synthesized nanocomposite are confirmed using Fourier transform infrared spectroscopy and Raman spectroscopy. Furthermore, field emission scanning electron microscopy, high-resolution transmission electron microscope, X-ray powder diffraction, and X-ray photoelectron spectroscopy provides a clear understanding of the morphology, coexisting phases, and elemental composition of the as-synthesized nanocomposites. The differential pulse voltammetry technique was utilized to elaborate the electrochemical sensing of UA using a GdS-Gd2O3/C-MWCNT modified glassy carbon electrode (GCE), The sensor showed an enhanced current response by more than 2-fold compared to bare GCE. Also, the sensor's performance was further improved by dispersing the nanocomposite in an ionic liquid with the exceptional reproducibility (SD = 0.0025, n = 3). The fabricated UA sensor GdS-Gd2O3/C-MWCNT/IL/GCE demonstrated a wide linear detection range from 0.5-30 μM and 30-2000 μM, effectively covering the entire physiological range of UA in biological fluids with a limit of detection (LOD) of 0.380 μM (+3SD of blank) and a sensitivity of 356.125 μA mM-1 cm-2. Moreover, the electrodes exhibited storage stability for 2 weeks with decrease in zero-day current by only 4.5%. The sensor was validated by quantifying UA in 12 unprocessed clinical human urine and serum samples, and its comparison with the gold standard test yielded remarkable results (p < 0.05). Hence, the proposed nonenzymatic electrochemical UA sensor is selective, sensitive, reproducible, and stable, making it reliable for point-of-care diagnostics.
Collapse
Affiliation(s)
- Srishti Verma
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atreyee Sen
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nirmita Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Pradip Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Vargas‐Varela A, Cardenas‐Riojas AA, Nagles E, Hurtado J. Detection of Allura Red in Food Samples Using Carbon Paste Modified with Lanthanum and Titanium Oxides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anthony Vargas‐Varela
- Facultad de Química e Ing. Química Universidad Nacional Mayor de San Marcos. Lima Perú 07016
| | | | - Edgar Nagles
- Facultad de Química e Ing. Química Universidad Nacional Mayor de San Marcos. Lima Perú 07016
| | - John Hurtado
- Departamento de Química Universidad de los Andes Bogotá Colombia
| |
Collapse
|
4
|
Xie Y, Yang L, Wang G, Luo X, Hao H, Wang M, Wang Z, Chen J, Lou F, Xie Q, Wang G. Flexible Three-Dimensional Hierarchical Porous Multifunctional Electrodes for Enhanced Performance by Electrodepositing Perovskite CeFeO 3 on Carbon Foam. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuting Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liangxuan Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuejia Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huming Hao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyao Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqiang Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianyue Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fanghui Lou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qingshan Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. BIOSENSORS 2022; 12:bios12090705. [PMID: 36140095 PMCID: PMC9496040 DOI: 10.3390/bios12090705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
Collapse
|
6
|
Gashu M, Kassa A, Tefera M, Amare M, Aragaw BA. Sensitive and selective electrochemical determination of doxycycline in pharmaceutical formulations using poly(dipicrylamine) modified glassy carbon electrode. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
7
|
Kumar Y, Sharma V, Vashistha VK, VSR Pullabhotla R, Das DK. Cobalt Ferrite Nanocomposite as Electrochemical Sensor for The Detection of Guanine, Uric Acid and Their Mixture. CHEMISTRY & CHEMICAL TECHNOLOGY 2021. [DOI: 10.23939/chcht15.04.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cobalt ferrite nanocomposite was synthesized and characterized by analytical techniques such as FESEM, EDS and XRD. The average crystallite size was found to be in the range of 10–12 nm with a cubic structure. Further, the nanocomposite was used for the detection of guanine (GU) and uric acid (UA) and found to be an efficient electrode modifier. The lower limit of detection for GU and UA was found to be 300 nM and 400 nM, respectively
Collapse
|
8
|
Influence of cationic surfactant cetyltrimethylammonium bromide for electrochemical detection of guanine, uric acid and dopamine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Lanthanum Ferrite Ceramic Powders: Synthesis, Characterization and Electrochemical Detection Application. MATERIALS 2020; 13:ma13092061. [PMID: 32365678 PMCID: PMC7254238 DOI: 10.3390/ma13092061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
The perovskite-type lanthanum ferrite, LaFeO3, has been prepared by thermal decomposition of in situ obtained lanthanum ferrioxalate compound precursor, LaFe(C2O4)3·3H2O. The oxalate precursor was synthesized through the redox reaction between 1,2-ethanediol and nitrate ion and characterized by chemical analysis, infrared spectroscopy, and thermal analysis. LaFeO3 obtained after the calcination of the precursor for at least 550-800 °C/1 h have been investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). A boron-doped diamond electrode (BDD) modified with LaFeO3 ceramic powders at 550 °C (LaFeO3/BDD) by simple immersion was characterized by cyclic voltammetry and tested for the voltammetric and amperometric detection of capecitabine (CCB), which is a cytostatic drug considered as an emerging pollutant in water. The modified electrode exhibited a complex electrochemical behaviour by several redox systems in direct relation to the electrode potential range. The results obtained by cyclic voltammetry (CV), differential-pulsed voltammetry (DPV), and multiple-pulsed amperometry proved the electrocatalytic effect to capecitabine oxidation and reduction and allowed its electrochemical detection in alkaline aqueous solution.
Collapse
|
10
|
Kumar Y, Pramanik P, Das DK. Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon 2019; 5:e02031. [PMID: 31321329 PMCID: PMC6612601 DOI: 10.1016/j.heliyon.2019.e02031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023] Open
Abstract
Some electrodes for efficient detection of paracetamol and dopamine were developed from nano sized material of cobalt ferrite (np-CoFe2O4) and manganese ferrite (np-MnFe2O4). These oxides were synthesized by combustion method using cobalt nitrate, manganese acetate and ferric nitrate as precursors in the presence of sugar and ethanolamine. The crystallite size, shape and morphology of nano material were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS) techniques. The crystallite sizes of synthesized nano-particles (nps) were in the range from 10 to 12 nm (calculated using Debye-Scherrer equation) with cubic crystal system. These particles were utilized as electrode modified with graphite for simultaneous detection of paracetamol and dopamine through cyclic voltammetry and Differential pulse voltammetry techniques and was found to be superior to reported literatures. The minimum detection limit of paracetamol and dopamine at CoFe2O4/GP electrode were 250 nM and 350 nM while at MnFe2O4/GP electrode it was 300 nM and 400 nM, respectively. Both the electrodes exhibited the linearity range from3 μM to 200 μM & 3 μM-160 μM for paracetamol and 3 μM-180 μM & 5 μM to 200 for dopamine, respectively. Two oxidation peaks of paracetamol and dopamine were well separated in phosphate buffer (pH = 6) in mixture with 100 mVs-1 and 50 mVs-1 scan rate for cyclic voltammetry and Differential pulse voltammetry, respectively. Both the electrodes demonstrated satisfactory results in real samples of paracetamol and dopamine.
Collapse
Affiliation(s)
- Yogendra Kumar
- Department of Chemistry, GLA University, 17 Km Stone NH-19 Delhi Mathura Highway Chaumuhan, Mathura, 281406, India
| | - Panchanan Pramanik
- Department of Chemistry, GLA University, 17 Km Stone NH-19 Delhi Mathura Highway Chaumuhan, Mathura, 281406, India
| | - Dipak Kumar Das
- Department of Chemistry, GLA University, 17 Km Stone NH-19 Delhi Mathura Highway Chaumuhan, Mathura, 281406, India
| |
Collapse
|
11
|
Zhou S, Guo X, Meng L, Cui J, Li J, Yuan X, Wu D. A miniature electrochemical detection system based on GOQDs/MWCNTs /SPCE* for determination the purine in cells. Anal Biochem 2019; 577:67-72. [DOI: 10.1016/j.ab.2019.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/20/2019] [Accepted: 04/20/2019] [Indexed: 12/27/2022]
|