1
|
Khalifa Z, Abo Oura MF, Hathoot A, Azzem MA. Voltammetric determination of hydrogen peroxide at decorated palladium nanoparticles/poly 1,5-diaminonaphthalene modified carbon-paste electrode. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231894. [PMID: 39100189 PMCID: PMC11296075 DOI: 10.1098/rsos.231894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/27/2024] [Indexed: 08/06/2024]
Abstract
In this work, palladium nanoparticles (PdNPs)/p1,5-DAN/ carbon paste electrode (CPE) and p1,5-DAN/CPE sensors have been developed for determination of hydrogen peroxide. Both sensors showed a highly sensitive and selective electrochemical behaviour, which were derived from a large specific area of poly 1,5 DAN and super excellent electroconductibility of PdNPs. PdNPs/p1,5-DAN/CPE exhibited excellent performance over p1,5-DAN/CPE. Thus, it was used for detecting hydrogen peroxide (H2O2) with linear ranges of 0.1 to 250 µM and 0.2 to 300 µM as well as detection limits (S/N = 3) of 1.0 and 5.0 nM for square wave voltammetry (SWV) and cyclic voltammetry (C.V) techniques, respectively. The modified CPE has good reproducibility, adequate catalytic activity, simple synthesis and stability of peak response during H2O2 oxidation on long run that exceeds many probes. Both reproducibility and stability for H2O2 detection are attributable to the PdNPs immobilized on the surface of p1,5-DAN/CPE. The modified CPE was used for determining H2O2 in real specimens with good stability, sensitivity, and reproducibility.
Collapse
Affiliation(s)
- Ziad Khalifa
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt, El Sherouk City 11837, Egypt
| | - Mohamed Fathi Abo Oura
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| | - Abla Hathoot
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| | - Magdi Abdel Azzem
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| |
Collapse
|
2
|
Etemad L, Salmasi Z, Moosavian Kalat SA, Moshiri M, Zamanian J, Kesharwani P, Sahebkar A. An overview on nanoplatforms for statins delivery: Perspectives for safe and effective therapy. ENVIRONMENTAL RESEARCH 2023; 234:116572. [PMID: 37429398 DOI: 10.1016/j.envres.2023.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Statins are the most widely used pharmacological agents for reducing blood cholesterol levels and treating atherosclerotic cardiovascular diseases. Most of the statins' derivatives have been limited by water solubility, bioavailability, and oral absorption, which has led to adverse effects on several organs, especially at high doses. As an approach to reducing statin intolerance, achieving a stable formulation with improved efficacy and bioavailability at low doses has been suggested. Nanotechnology-based formulations may provide a therapeutic benefit over traditional formulations in terms of potency and biosafety. Nanocarriers can provide tailored delivery platforms for statins, thereby enhancing the localized biological effects and lowering the risk of undesired side effects while boosting statin's therapeutic index. Furthermore, tailored nanoparticles can deliver the active cargo to the desired site, which culminates in reducing off-targeting and toxicity. Nanomedicine could also provide opportunities for therapeutic methods by personalized medicine. This review delves into the existing data on the potential improvement of statin therapy using nano-formulations.
Collapse
Affiliation(s)
- Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian Kalat
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Matias TA, de Faria LV, Rocha RG, Silva MNT, Nossol E, Richter EM, Muñoz RAA. Prussian blue-modified laser-induced graphene platforms for detection of hydrogen peroxide. Mikrochim Acta 2022; 189:188. [DOI: 10.1007/s00604-022-05295-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
4
|
Aryldiazonium gold salts as efficient oxidants for polymerization of anilines. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
6
|
Azeredo NFB, Gonçalves JM, Lima IS, Araki K, Wang J, Angnes L. Screen‐printed Nickel‐Cerium Hydroxide Sensor for Acetaminophen Determination in Body Fluids. ChemElectroChem 2021. [DOI: 10.1002/celc.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nathália F. B. Azeredo
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
- Department of Nanoengineering University of California San Diego La Jolla USA
| | - Josué M. Gonçalves
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Irlan S. Lima
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| | - Joseph Wang
- Department of Nanoengineering University of California San Diego La Jolla USA
| | - Lúcio Angnes
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo Brazil
| |
Collapse
|
7
|
Rahman MM, Adeosun WA, Asiri AM. Fabrication of selective and sensitive chemical sensor development based on flower-flake La2ZnO4 nanocomposite for effective non-enzymatic sensing of hydrogen peroxide by electrochemical method. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Lu YS, Pan WY, Hung TC, Hsieh YT. Electrodeposition of Silver in a Ternary Deep Eutectic Solvent and the Electrochemical Sensing Ability of the Ag-Modified Electrode for Nitrofurazone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11358-11365. [PMID: 32893635 DOI: 10.1021/acs.langmuir.0c02213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The determination of nitrofurazone (NFZ) has received substantial attention because it is a kind of antibiotic drug. Herein, a rapid and low-cost electrochemical sensor for the analysis of NFZ is reported. The method uses Ag-modified electrodes in which different surfactants, hexadecyltrimethylammonium bromide and sodium dodecyl sulfate, in a ternary choline chloride-urea-glycerol deep eutectic solvent were deposited. The physical properties of the solutions with various surfactants are investigated by a conductivity meter, viscometer, and tensiometer. The morphologies and crystallinity of the Ag-modified electrodes were characterized by using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Electrochemical impedance spectroscopy and CV analyses indicate that the as-prepared Ag-SDS electrode exhibited better performance as a NFZ sensor. The dynamic linear range of NFZ is 0.66-930 μM with a corresponding detection limit of 0.37 μM. The proposed electrochemical sensor was applied to detect NFZ in the aquaculture water sample, and the results showed good recovery in the range from 100.28 to 102.65%.
Collapse
Affiliation(s)
- Yung-Shun Lu
- Department of Chemistry, Soochow University, Taipei City 11102, Taiwan
| | - Wei-Ying Pan
- Department of Chemistry, Soochow University, Taipei City 11102, Taiwan
| | - Tzu-Chiao Hung
- Department of Chemistry, Soochow University, Taipei City 11102, Taiwan
| | - Yi-Ting Hsieh
- Department of Chemistry, Soochow University, Taipei City 11102, Taiwan
| |
Collapse
|
9
|
Kokab T, Manzoor A, Shah A, Siddiqi HM, Nisar J, Ashiq MN, Shah AH. Development of tribenzamide functionalized electrochemical sensor for femtomolar level sensing of multiple inorganic water pollutants. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Ranđelović MS, Momčilović MZ, Milićević JS, Đurović-Pejčev RD, Mofarah SS, Sorrel CC. Voltammetric sensor based on Pt nanoparticles suported MWCNT for determination of pesticide clomazone in water samples. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Sultan S, Shah A, Khan B, Nisar J, Shah MR, Ashiq MN, Akhter MS, Shah AH. Calix[4]arene Derivative-Modified Glassy Carbon Electrode: A New Sensing Platform for Rapid, Simultaneous, and Picomolar Detection of Zn(II), Pb(II), As(III), and Hg(II). ACS OMEGA 2019; 4:16860-16866. [PMID: 31646232 PMCID: PMC6796916 DOI: 10.1021/acsomega.9b01869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The glassy carbon electrode was fabricated with multifunctional bis-triazole-appended calix[4]arene and then used for the simultaneous detection of Zn(II), Pb(II), As(III), and Hg(II). Before applying the square-wave anodic stripping voltammetry, the sensitivity and precision of the modified electrode was assured by optimizing various conditions such as the modifier concentration, pH of the solution, deposition potential, accumulation time, and supporting electrolytes. The modified glassy carbon electrode was found to be responsive up to picomolar limits for the aforementioned heavy metal ions, which is a concentration limit much lower than the threshold level permitted by the World Health Organization. Importantly, the designed sensing platform showed anti-interference ability, good stability, repeatability, reproducibility, and applicability for the detection of multiple metal ions. The detection limits obtained for Zn(II), Pb(II), As(III), and Hg(II) are 66.3, 14.6, 71.9, and 28.9 pM, respectively.
Collapse
Affiliation(s)
- Sundus Sultan
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Burhan Khan
- H.E.J Research Institute of Chemistry, International
Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Raza Shah
- H.E.J Research Institute of Chemistry, International
Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Naeem Ashiq
- Institute
of Chemical Sciences, Bahauddin Zakaryia
University, Multan 6100, Pakistan
| | - Mohammad Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Aamir Hassan Shah
- CAS Laboratory of Nanosystem
and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
12
|
Simultaneous, ultrasensitive detection of hydroquinone, paracetamol and estradiol for quality control of tap water with a simple electrochemical method. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113319] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
A novel enzyme-less amperometric sensor for hydrogen peroxide based on nickel molybdate nanoparticles. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Abdelwahab AA, Abdel‐Hakim M, Abdelmottaleb M, Elshahawy AS. Palladium Nanoclusters Uniformly Enveloped Electrochemically Activated Graphene for Highly Sensitive Hydrogen Peroxide Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Adel A. Abdelwahab
- Chemistry Department, Faculty of Science and ArtsJouf University Qurayyat 75911 Saudi Arabia E-mail: aabdelwahab
- Chemistry Department, Faculty of ScienceAl-Azhar University Assiut 71524 Egypt
| | - M. Abdel‐Hakim
- Chemistry Department, Faculty of ScienceAl-Azhar University Assiut 71524 Egypt
| | | | - Anwar S. Elshahawy
- Chemistry Department, Faculty of ScienceAssiut University Assiut 71524 Egypt
| |
Collapse
|