1
|
Ganesh PS, Elugoke SE, Lee SH, Ko HU, Kim SY, Ebenso EE. A bifunctional MoS 2/SGCN nanocatalyst for the electrochemical detection and degradation of hazardous 4-nitrophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116701. [PMID: 39018731 DOI: 10.1016/j.ecoenv.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Herein, we reported the dual functions of molybdenum disulfide/sulfur-doped graphitic carbon nitride (MoS2/SGCN) composite as a sensing material for electrochemical detection of 4-NP and a catalyst for 4-NP degradation. The MoS2 nanosheet, sulfur-doped graphitic carbon nitride (SGCN) and MoS2/SGCN were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) spectroscopy and X-ray photoelectron spectroscopy (XPS). Electrochemical characterization of these materials with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1 mM K4[Fe(CN)6]3-/4- show that the composite has the lowest charge transfer resistance and the best electrocatalytic activity. The limit of detection (LOD) and the linear range of 4-nitrophenol at MoS2/SGCN modified glassy carbon electrode (MoS2/SGCN/GCE) were computed as 12.8 nM and 0.1 - 2.6 μM, respectively. Also, the percentage recoveries of 4-NP in spiked tap water samples ranged from 97.8 - 99.1 %. The electroanalysis of 4-NP in the presence of notable interferons shows that the proposed electrochemical sensor features outstanding selectivity toward 4-NP. Additionally, the results of the catalytic degradation of 4-NP at MoS2/SGCN show that the nanocatalyst catalyzed the transformation of 4-NP to 4-aminophenol (4-AP) with a first-order rate constant (k) estimated to be 4.2 ×10-2 s-1. The results of this study confirm that the MoS2/SGCN nanocatalyst is a useful implement for electroanalytical monitoring and catalytic degradation of the hazardous 4-NP in water samples.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
| | - Hyun-U Ko
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
2
|
Alqahtani YS, Mahmoud AM, El-Wekil MM, Ibrahim H. Surface engineering of carbon microspheres with nanoceria wrapped on MWCNTs: a dual electrocatalyst for simultaneous monitoring of molnupiravir and paracetamol. RSC Adv 2024; 14:5406-5416. [PMID: 38348296 PMCID: PMC10860542 DOI: 10.1039/d3ra08098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
In the present study, nanoceria-decorated MWCNTs (CeNPs@MWCNTs) were synthesized using a simple and inexpensive process. Molnupiravir (MPV) has gained considerable attention in recent years due to the infection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Since some people infected with COVID-19 experience fever and headaches, paracetamol (PCM) has been prescribed to relieve these symptoms. Therefore, there is an urgent need to monitor and detect these drugs simultaneously in pharmaceutical and biological samples. In this regard, we developed a novel sensor based on nanoceria-loaded MWCNTs (CeNPs@MWCNTs) for simultaneous monitoring of MPV and PCM. The incorporation of CeNPs@MWCNTs electrocatalyst into a glassy carbon microsphere fluorolube oil paste electrode (GCMFE) creates more active sites, which increase the surface area, electrocatalytic ability, and electron transfer efficiency. Interestingly, CeNPs@MWCNTs modified GCMFE demonstrated excellent detection limits (6.0 nM, 8.6 nM), linear ranges (5.0-5120 nM, 8.0-4162 nM), and sensitivities (78.6, 94.3 μA μM-1 cm-2) for simultaneous detection of MPV and PCM. The developed CeNPs@MWCNTs electrocatalyst modified GCMFE exhibited good repeatability, anti-interference capability, stability, and real-time analysis with good recovery results, which clearly indicates that it can be used for real-time industrial applications.
Collapse
Affiliation(s)
- Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
- School of Biotechnology, Badr University in Assiut Assiut 2014101 Egypt
| |
Collapse
|
3
|
Gharous M, Bounab L, Pereira FJ, Choukairi M, López R, Aller AJ. Electrochemical Kinetics and Detection of Paracetamol by Stevensite-Modified Carbon Paste Electrode in Biological Fluids and Pharmaceutical Formulations. Int J Mol Sci 2023; 24:11269. [PMID: 37511028 PMCID: PMC10378910 DOI: 10.3390/ijms241411269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Paracetamol (PCT), or acetaminophen, is an important drug used worldwide for various clinical purposes. However, the excessive or indiscriminate use of PCT can provoke liver and kidney dysfunction; hence, it is essential to determine the amount of this target in biological samples. In this work, we develop a quick, simple, and sensitive voltammetric method using chemically modified electrodes to determine PCT in complex matrices, including human serum and commercial solid formulations. We modify the carbon paste electrode with stevensite monoclinic clay mineral (Stv-CPE), using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy to characterise and detect PCT. The kinetics study provides a better electrochemical characterisation of the electrode behaviour, finding the detection and quantitation limits of 0.2 μM and 0.5 μM under favourable conditions. Further, the best linear working concentration range is 0.6-100 μM for PCT, applying the proposed method to the quantitative determination of PCT content in reference tablet formulations and biological samples for validation.
Collapse
Affiliation(s)
- Moaad Gharous
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Loubna Bounab
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Fernando J Pereira
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - Mohamed Choukairi
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Roberto López
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - A Javier Aller
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| |
Collapse
|
4
|
Shivaraj B, Prabhakara M, Bhojya Naik H, Indrajith Naik E, Viswanath R, Shashank M. Fabrication of Tb doped ZnO nanoparticle via co-precipitation technique for multifunctional applications. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Ahmad A, Ali F, ALOthman ZA, Luque R. UV assisted synthesis of folic acid functionalized ZnO-Ag hexagonal nanoprisms for efficient catalytic reduction of Cr +6 and 4-nitrophenol. CHEMOSPHERE 2023; 319:137951. [PMID: 36702417 DOI: 10.1016/j.chemosphere.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Chemical-based syntheses of metallic nanoparticles (MNPs) has become a major topic of research exploration in the field of nanotechnology. The utilization of folic acid (FA) as stabilizing and capping agent has been reported as a novel route for the synthesis of bimetallic nanomaterials. The present study includes novel research and brief discussion about preparation of UV light assisted ZnO-Ag nanobars (NBs) using FA as stabilizing agent and its catalytic applications on the reduction of organic pollutants (4-NP and Cr+6) using NBs as a catalyst alongwith ascorbic acid (AA). Analytical techniques including UV-visible spectroscopy, XRD, SEM, EDX and FT-IR were used for the characterizing synthesized ZnO-Ag NBs. Hexagonal structure of ZnO-Ag NBs were found having crystallite size 5.6 nm and SEM studies revealed the nanobar width 33.2 nm and length 133.5 nm. The prepared ZnO-Ag NBs were tested for their catalytic activity for the reduction of 4-nitrophenol (4-NP) and Cr+6. In the presence of ZnO-Ag NBs and AA, an effective reduction of 4-nitrophenol (4-NP) and Cr+6 was achieved up to 93% and 90% in 17 and 26 min with respectively. The successful and efficient catalytic activity of NBs may be attributed to the size of NBs or the concentration of FA employed for synthesis.
Collapse
Affiliation(s)
- Awais Ahmad
- Departmento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain.
| | - Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departmento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
6
|
Mohamed RMK, Mohamed SH, Asran AM, Alsohaimi IH, Hassan HMA, Ibrahim H, El-Wekil MM. Synergistic effect of gold nanoparticles anchored on conductive carbon black as an efficient electrochemical sensor for sensitive detection of anti-COVID-19 drug Favipiravir in absence and presence of co-administered drug Paracetamol. Microchem J 2023; 190:108696. [PMID: 37034437 PMCID: PMC10065810 DOI: 10.1016/j.microc.2023.108696] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Favipiravir (FVP) is introduced as a promising newly developed antiviral drug against the coronavirus disease 2019 (COVID-19). Therefore, the accurate determination of FVP is of great significance for quality assessment and clinical diagnosis. Herein, a novel electrochemical sensing platform for FVP based on gold nanoparticles anchored conductive carbon black (Au@CCB) modified graphite nanopowder flakes paste electrode (GNFPE) was constructed. Morphological and nanostructure properties of Au@CCB have been investigated by TEM, HRTEM, and EDX methods. The morphology and electrochemical properties of Au@CCB/GNFPE were characterized by SEM, cyclic voltammetry (CV), and EIS. The Au@CCB nanostructured modified GNFPE exhibited strong electro-catalytic ability towards the oxidation of FVP. The performance of the fabricated Au@CCB/GNFPE was examined by monitoring FVP concentrations in the absence and presence of co-administered drug paracetamol (PCT) by AdS-SWV. It was demonstrated that the proposed sensor exhibited superior sensitivity, stability, and anti-interference capability for the detection of FVP. The simultaneous determination of a binary mixture containing FVP and the co-administered drug PCT using Au@CCB/GNFPE sensor is reported for the first time. Under optimized conditions, the developed sensor exhibited sensitive voltammetric responses to FVP and PCT with low detection limits of 7.5 nM and 4.3 nM, respectively. The sensing electrode was successfully used to determine FVP and PCT simultaneously in spiked human plasma and pharmaceutical preparations, and the findings were satisfactory. Finally, the fabricated sensor exhibited high sensitivity for simultaneous detection of FVP and PCT in the presence of ascorbic acid in a real sample.
Collapse
Affiliation(s)
- Rasha M K Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Sabrein H Mohamed
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Aml M Asran
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
7
|
Electrochemical strategy based on the synergistic effect of ZIF-8 and MWCNTs for quantitation of tert-butylhydroquinone in oils and fried chips. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Luo Q, Su Y, Zhang H. Sensitive dopamine sensor based on electrodeposited gold nanoparticles and electro-modulated MoS2 nanoflakes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Roostaee M, Beitollahi H, Sheikhshoaie I. Simultaneous Determination of Dopamine and Uric Acid in Real Samples Using a Voltammetric Nanosensor Based on Co-MOF, Graphene Oxide, and 1-Methyl-3-butylimidazolium Bromide. MICROMACHINES 2022; 13:mi13111834. [PMID: 36363855 PMCID: PMC9697397 DOI: 10.3390/mi13111834] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/27/2023]
Abstract
A chemically modified carbon paste electrode, based on a CoMOF-graphene oxide (GO) and an ionic liquid of 1-methyl-3-butylimidazolium bromide (CoMOF-GO/1-M,3-BB/CPE), was fabricated for the simultaneous determination of dopamine (DA) and uric acid (UA). The prepared CoMOF/GO nanocomposite was characterized by field emission-scanning electron microscopy (FE-SEM), the X-ray diffraction (XRD) method, a N2 adsorption-desorption isotherm, and an energy dispersive spectrometer (EDS). The electrochemical sensor clearly illustrated catalytic activity towards the redox reaction of dopamine (DA), which can be authenticated by comparing the increased oxidation peak current with the bare carbon paste electrode. The CoMOF-GO/1-M,3-BB/CPE exhibits a wide linear response for DA in the concentration range of 0.1 to 300.0 µM, with a detection limit of 0.04 µM. The oxidation peaks' potential for DA and uric acid (UA) were separated well in the mixture containing the two compounds. This study demonstrated a simple and effective method for detecting DA and UA in real samples.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
10
|
Kumar C M P, B AR, Kumar M, C P R. Natural nano-fillers materials for the Bio-composites: A review. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Synthesis of Novel Nanostructured Copper Tungstate/GCE Electrochemical System in Deep Eutectic Solvent medium for Simultaneous Detection of Dopamine and Paracetamol. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Manjunatha K, Kumara Swamy B, Jayaprakash G, Sharma S, Lalitha P, Vishnumurthy K. Electrochemical determination of paracetamol at Cu doped ZnO/Nanoparticle with TX-100-surfactant MCPE: A cyclic voltammetric technique. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Electrochemical Determination of Paracetamol at Cu doped ZnO/Nanoparticle with TX-100-Surfactant MCPE : A Cyclic Voltammetric Technique. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Hefnawy MA, Medany SS, Fadlallah SA, El-Sherif RM, Hassan SS. Novel Self-assembly Pd(II)-Schiff Base Complex Modified Glassy Carbon Electrode for Electrochemical Detection of Paracetamol. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00741-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractA self-assembly Pd-Schiff base complex was synthesized and used as an electrochemical sensor in phosphate buffer solution, where it enhanced the electrocatalytic activity toward the paracetamol detection. The Schiff base {(HL) = (4-(((Z)-3-(hydroxyimino) butan-2-ylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one)} was selected to prepare Pd-based complexes due to its high antimicrobial activity. A linear calibration curve was constructed using GC/Pd-SB in paracetamol concentration range of 1–50 μM and its detection limit was calculated as 0.067 μM. The modified electrode, GC/Pd-SB, could successfully determine the paracetamol concentration in human blood serum and commercial drug tablets with high sensitivity. The prepared metal complex was characterized using techniques, namely, X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, electrochemical studies were performed using different electrochemical techniques like cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). DFT calculations were used to estimate the equilibrium geometry, molecular orbital, ground-state properties, and interaction energy between paracetamol and palladium.
Graphical Abstract
Collapse
|
15
|
Baezzat MR, Jahromi FZ. Differential Pulse Voltammetric Determination of Acetaminophen Using Carbon Paste Electrode Modified with β-Cyclodextrin/Gold/Titanium Dioxide Nanocomposite. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ma J, Bai W, Liu X, Zheng J. Electrochemical dopamine sensor based on bi-metallic Co/Zn porphyrin metal-organic framework. Mikrochim Acta 2021; 189:20. [PMID: 34878598 DOI: 10.1007/s00604-021-05122-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
Integrating other metal ions into mono-metallic metal-organic framework (MOF) to form bi-metallic MOF is an effective strategy to enhance the performance of MOFs from the internal structure. In this study, two-dimensional (2D) cobalt/zinc-porphyrin (Co/Zn-TCPP) MOF nanomaterials with different Co/Zn molar ratios were synthesised using a simple surfactant-assisted method, and novel dopamine (DA) sensing methods were constructed based on these materials. The characterisation results showed that all MOF with different Co/Zn molar ratios presented a nanofilm, and the Co and Zn elements were uniformly distributed. All sensors based on CoxZn100-x-TCPP had a certain catalytic performance to DA. Among them, the sensor based on CO25Zn75-TCPP showed the strongest signal response, indicating that the catalytic performance of MOF on DA can be adjusted by changing the Co/Zn molar ratio. The doping of metal ions improves the chemical environment of the pores, and increases the types and spatial arrangement of the active sites of the MOF, which is beneficial to the electron transfer and exchange with DA; Co2+ and Zn2+ active centres have a synergistic promotion effect, so the catalytic activity of MOF is significantly improved. The linear range at the potential of 0.1 V based on Co25Zn75-TCPP for DA was 5 nM-177.8 μM, with a detection limit of 1.67 nM (S/N = 3). The sensor exhibited a good selectivity for detecting DA. This research is expected to provide new ideas and references for constructing high-performance sensing interfaces and platforms.
Collapse
Affiliation(s)
- Junping Ma
- College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Wushuang Bai
- College of Food Science and Engineering, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710169, Shaanxi, China.
| | - Xiaoli Liu
- College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Jianbin Zheng
- College of Chemistry & Materials Science, Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
17
|
Sukanya SD, Swamy BEK, Shashikumara JK, Sharma SC, Hariprasad SA. Poly (Orange CD) sensor for paracetamol in presence of folic acid and dopamine. Sci Rep 2021; 11:22332. [PMID: 34785686 PMCID: PMC8595450 DOI: 10.1038/s41598-021-01311-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
In the present work, Orange CD was chosen as an intriguing modifier for the electropolymerization on the surface of CPE by the CV technique. A novel, sensitive, and cost-effective poly (Orange CD) MCPE (PoOCD/MCPE) sensor was utilized for the selective detection of paracetamol (PA) in 0.2 M phosphate buffer solution (PBS) of pH 7.4. The oxidation peak current of PA was vastly enhanced at the sensor. The scan rate study is suggested that electro-oxidation of PA was adsorption-controlled. The pH study testifies the redox pathways transport with the same quantity of electrons and protons. The detection limit of PA is found to be 2.64 µM. DPV results show that substantial peak separation between PA, folic acid (FA), and dopamine (DA) could be facilitating their individual and simultaneous determination on the sensor. The decorated sensor demonstrates high sensitivity, stability, reproducibility, repeatability and has been successfully exploited for the detection of PA in a tablet with promising results.
Collapse
Affiliation(s)
- S D Sukanya
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India.
| | - J K Shashikumara
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - S C Sharma
- National Assessment and Accreditation Council (Work Carried Out as Honorary Professor), Jain University, Bangalore, Karnataka, 560 069, India.
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India.
| | | |
Collapse
|
18
|
Ganesh PS, Kim SY, Choi DS, Kaya S, Serdaroğlu G, Shimoga G, Shin EJ, Lee SH. Electrochemical investigations and theoretical studies of biocompatible niacin-modified carbon paste electrode interface for electrochemical sensing of folic acid. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AbstractThe modified electrode–analyte interaction is critical in establishing the sensing mechanism and in developing an electrochemical sensor. Here, the niacin-modified carbon paste electrode (NC/CPE) was fabricated for electrochemical sensing applications. The two stable structures of the niacin were optimized and confirmed by the absence of negative vibrational frequency, at B3LYP and B3LYP-GD3BJ level and 6–311 g** basis set. The physical and quantum chemical quantities were used to explain the molecular stability and electronic structure-related properties of the niacin. The natural bond orbital (NBO) analysis was performed to disclose the donor–acceptor interactions that were a critical role in explaining the modifier–analyte interaction. The fabricated NC/CPE was used for the determination of folic acid (FA) in physiological pH by cyclic voltammetry (CV) method. The limit of detection (LOD) for FA at NC/CPE was calculated to be 0.09 µM in the linear concentration range of 5.0 µM to 45.0 µM (0.2 M PBS, pH 7.4) by CV technique. The analytical applicability of the NC/CPE was evaluated in real samples, such as fruit juice and pharmaceutical sample, and the obtained results were acceptable. The HOMO and LUMO densities are used to identify the nucleophilic and electrophilic regions of niacin. The use of density functional theory-based quantum chemical simulations to understand the sensory performance of the modifier has laid a new foundation for fabricating electrochemical sensing platforms.
Collapse
|
19
|
Healy B, Rizzuto F, de Rose M, Yu T, Breslin CB. Electrochemical determination of acetaminophen at a carbon electrode modified in the presence of β-cyclodextrin: role of the activated glassy carbon and the electropolymerised β-cyclodextrin. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAcetaminophen is a well-known drug commonly used to provide pain relief, but it can also lead to acute liver failure at high concentrations. Therefore, there is considerable interest in monitoring its concentrations. Sensitive and selective acetaminophen electrochemical sensors were designed by cycling a glassy carbon electrode (GCE) to high potentials in the presence of β-CD in a phosphate electrolyte, or by simply activating the GCE electrode in the phosphate solution. Using cyclic voltammetry, adsorption-like voltammograms were recorded. The acetaminophen oxidation product, N-acetyl benzoquinone imine, was protected from hydrolysis, and this was attributed to the adsorption of acetaminophen at the modified GCE. The rate constants for the oxidation of acetaminophen were estimated as 4.3 × 10–3 cm2 s–1 and 3.4 × 10–3 cm2 s–1 for the β-CD-modified and -activated electrodes, respectively. Using differential pulse voltammetry, the limit of detection was calculated as 9.7 × 10–8 M with a linear concentration range extending from 0.1 to 80 μM. Furthermore, good selectivity was achieved in the presence of caffeine, ascorbic acid and aspirin, enabling the determination of acetaminophen in a commercial tablet. Similar electrochemical data were obtained for both the β-CD-modified and activated GCE surfaces, suggesting that the enhanced detection of acetaminophen is connected mainly to the activation and oxidation of the GCE. Using SEM, EDX and FTIR, no evidence was obtained to indicate that the β-CD was electropolymerised at the GCE.
Collapse
|
20
|
Electrochemical activation of copper oxide decorated graphene oxide modified carbon paste electrode surface for the simultaneous determination of hazardous Di-hydroxybenzene isomers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Bakirhan NK, Kaya SI, Jabbarov R, Gahramanova G, Abdullayeva S, Dedeoglu A, Ozkan CK, Savaser A, Ozkan Y, Ozkan SA. The Power of Carbon Nanotubes on Sensitive Drug Determination Methods. Crit Rev Anal Chem 2021; 53:374-383. [PMID: 34334078 DOI: 10.1080/10408347.2021.1958296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, carbon nanotubes (CNTs) due to their inorganic conducting, semiconducting, and organic π-π stacking properties are becoming innovative materials. CNTs have an adjustable size, large surface area, and other significant chemical properties. Due to their excellent electrical, optical, and mechanical properties, CNTs play an important role in various application fields. In the past decade, many unique intrinsic physical and chemical properties have been intensively explored for pharmaceutical, biological, and biomedical applications. The functionalization of CNTs results in a remarkably reduced cytotoxicity and at the same time increased biocompatibility. The toxicity studies reveal that highly water-soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. Ultrasensitive drug determination from its dosage form and/or biological samples with carbon nanotubes can be realized after surface modification. The main purpose of this review is to present recent achievements on CNTs which are investigated in electrochemical and chromatographically sensing technologies.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey.,Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Rasim Jabbarov
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Gulnaz Gahramanova
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Sevda Abdullayeva
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Aylin Dedeoglu
- Knowledge, Innovation and Technology Transfer Office, Başkent University, Ankara, Turkey
| | - Cansel Kose Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Ayhan Savaser
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Influence of cationic surfactant cetyltrimethylammonium bromide for electrochemical detection of guanine, uric acid and dopamine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Electrochemical vitamin sensors: A critical review. Talanta 2021; 222:121645. [DOI: 10.1016/j.talanta.2020.121645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
|
24
|
da Silva LV, dos Santos ND, de Almeida AK, dos Santos DDE, Santos ACF, França MC, Lima DJP, Lima PR, Goulart MO. A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Deepa S, Swamy BK, Pai KV. A surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of doxorubicin and dacarbazine its applications: A voltammetric study. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Poly (alanine)/NaOH/ MoS2/MWCNTs modified carbon paste electrode for simultaneous detection of dopamine, ascorbic acid, serotonin and guanine. Colloids Surf B Biointerfaces 2020; 196:111299. [DOI: 10.1016/j.colsurfb.2020.111299] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
27
|
Boumya W, Taoufik N, Achak M, Barka N. Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J Pharm Anal 2020; 11:138-154. [PMID: 34012690 PMCID: PMC8116204 DOI: 10.1016/j.jpha.2020.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required. Due to simplicity, higher sensitivity and selectivity as well as costefficiency, electrochemical sensors were fully investigated in last decades. This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples. The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined, with a special focus on highly innovative features introduced by nanotechnology. As the literature is rather extensive, we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.
Collapse
Affiliation(s)
- Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, B.P. 145, 25000, Khouribga, Morocco.,Chouaib Doukkali University, Ecole Nationale des Sciences Appliquées, Laboratoire des Sciences de l'Ingénieur pour l'Energie, El Jadida, Morocco
| | - Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, B.P. 145, 25000, Khouribga, Morocco
| | - Mounia Achak
- Chouaib Doukkali University, Ecole Nationale des Sciences Appliquées, Laboratoire des Sciences de l'Ingénieur pour l'Energie, El Jadida, Morocco.,Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Noureddine Barka
- Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
28
|
Teker T, Aslanoglu M. Sensitive and selective determination of paracetamol using a composite of carbon nanotubes and nanoparticles of samarium oxide and zirconium oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Guo H, Fan T, Yao W, Yang W, Wu N, Liu H, Wang M, Yang W. Simultaneous determination of 4-aminophenol and acetaminophen based on high electrochemical performance of ZIF-67/MWCNT-COOH/Nafion composite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105262] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Elugoke SE, Adekunle AS, Fayemi OE, Mamba BB, Nkambule TT, Sherif EM, Ebenso EE. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. NANO SELECT 2020. [DOI: 10.1002/nano.202000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University PMB Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - Thabo T.I. Nkambule
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
31
|
Deepa S, Kumara Swamy B, Vasantakumar Pai K. Voltammetric detection of anticancer drug Doxorubicin at pencil graphite electrode: A voltammetric study. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Sukanya, Kumara Swamy B, Shashikumara J. Voltammetric investigation of uric acid in existence of dopamine at Poly(benzydamine) modified carbon paste electrode. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|