1
|
Wang LH, Ren LL, Qin YF. The Review of Hybridization of Transition Metal-Based Chalcogenides for Lithium-Ion Battery Anodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4448. [PMID: 37374631 DOI: 10.3390/ma16124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Transition metal chalcogenides as potential anodes for lithium-ion batteries have been widely investigated. For practical application, the drawbacks of low conductivity and volume expansion should be further overcome. Besides the two conventional methods of nanostructure design and the doping of carbon-based materials, the component hybridization of transition metal-based chalcogenides can effectively enhance the electrochemical performance owing to the synergetic effect. Hybridization could promote the advantages of each chalcogenide and suppress the disadvantages of each chalcogenide to some extent. In this review, we focus on the four different types of component hybridization and the excellent electrochemical performance that originated from hybridization. The exciting problems of hybridization and the possibility of studying structural hybridization were also discussed. The binary and ternary transition metal-based chalcogenides are more promising to be used as future anodes of lithium-ion batteries for their excellent electrochemical performance originating from the synergetic effect.
Collapse
Affiliation(s)
- Lin-Hui Wang
- College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Long-Long Ren
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yu-Feng Qin
- College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
2
|
Xing X, Bao Y, Zhang Z, Deng C, Huang H, Lou Z, Sun L, Song Z. Preparation of anode material zinc ferrite by molten salt method and its electrochemical performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Hou C, Wang J, Zhang W, Li J, Zhang R, Zhou J, Fan Y, Li D, Dang F, Liu J, Li Y, Liang K, Kong B. Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13770-13780. [PMID: 32096974 DOI: 10.1021/acsami.9b20317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the excellent electrochemical performance of MnO-based electrodes, a large capacity increase cannot be avoided during long-life cycling, which makes it difficult to seek out appropriate cathode materials to match for commercial applications. In this work, a grape-like MnO-Ni@C framework from interfacial superassembly with remarkable electrochemical properties was fabricated as anode materials for lithium-ion batteries. Electrochemical analysis indicates that the introduction of Ni not only contributes to the excellent rate capability and high specific capacity but also prevents further oxidation of MnO to the higher valence states for ultrastable long-life cycling performance. Furthermore, thermodynamic calculation proves that the ultrastable long cycling life of the Ni-Mn-O system originated from a buffer composition region to stabilize the MnO structure. Because of the unique grape-like structure and performance of the Ni-Mn-O system, the MnO-Ni@C electrode displayed an invertible specific capacity of 706 mA h g-1 after 200 cycles at a current density of 0.1 A g-1 and excellent cycling stability maintained a capacity of 476.8 mA h g-1 after 2100 cycles at 1.0 A g-1 without obvious capacity change. This new nanocomposite material could offer a novel fabrication strategy and insight for MnO-based materials and other metal oxides as anodes for improved electrochemical performance.
Collapse
Affiliation(s)
- Chuanxin Hou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
| | - Weibin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
| | - Jiajia Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
| | - Runhao Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Junjie Zhou
- Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yuqi Fan
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, P. R. China
| | - Dajian Li
- Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Feng Dang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
| | - Jiaqing Liu
- Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yong Li
- Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Biao Kong
- Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Xue Q, Zhang Q. Agar Hydrogel Template Synthesis of Mn₃O₄ Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E503. [PMID: 30939770 PMCID: PMC6524068 DOI: 10.3390/nano9040503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
A novel strategy, ion diffusion method controlled by ion exchange membrane combining with agar hydrogel template, was reported for the synthesis of Mn₃O₄ nanoparticles without any oxidizing agents. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauere-Emmette-Teller (BET) isotherm were carried out to characterize the structure, morphology, pore size and distribution and specific surface area of the as-prepared nanomaterials. It is shown that the morphology and size of Mn₃O₄ nanoparticles can be controlled by the concentration of agar hydrogel. All the specific capacitances of the Mn₃O₄ samples prepared with agar hydrogel template are much higher than that of Mn₃O₄ prepared without any template agent. The Mn₃O₄ sample prepared at 1.5 g L-1 of agar hydrogel solution exhibits a highest specific capacitance of 183.0 F g-1 at the current density of 0.5 A g-1, which is increased by 293% compared with that of Mn₃O₄ synthesized without any template agent. The results indicate that the ion diffusion method controlled by ion exchange membrane combining with agar hydrogel template is a convenient and effective approach for preparing inorganic nanomaterials.
Collapse
Affiliation(s)
- Qian Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 Zhongguancun Street, Haidian District, Beijing 100081, China.
| |
Collapse
|