1
|
Failla M, Ferlazzo A, Abbate V, Neri G, Saccullo E, Gulino A, Rescifina A, Patamia V, Floresta G. THP as a sensor for the electrochemical detection of H 2O 2. Bioorg Chem 2024; 152:107721. [PMID: 39178705 DOI: 10.1016/j.bioorg.2024.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hydrogen peroxide (H2O2) detection is paramount in biological and clinical domains due to its pivotal role in various physiological and pathological processes. This molecule is a crucial metabolite and effector in cellular redox mechanisms, influencing diverse cellular signaling pathways and bolstering the body's defense mechanisms against infection and oxidative stress. Organic molecule-based electrodes present unique advantages such as operational versatility and scalability, rendering them attractive candidates for sensor development across diverse fields encompassing food safety, healthcare, and environmental monitoring. This study explores the electrochemical properties of a tris(3-hydroxypyridin-4-one) THP, which has been unexplored in electrochemical sensing. Leveraging THP's chelating properties, we aimed to develop an electrochemical probe for hydrogen peroxide detection. Our investigations reveal promising results, with the developed sensor exhibiting a low limit of detection (LOD) of 144 nM, underscoring its potential utility in sensitive and selective H2O2 detection applications. In addition, the new sensor was also tested on fetal bovine serum (FBS) to emphasize future applications on biological matrices. This research signifies a significant stride in advancing electrochemical sensor technologies for hydrogen peroxide detection with several novelties related to the usage of THP, such as high sensitivity and selectivity, performance in biological matrices, repeatability, stability, and reproducibility, economical and practical advantages. This research opens new avenues for enhanced biomedical diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Angelo Ferlazzo
- Department of Chemical Sciences and INSTM Research Unit, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Vincenzo Abbate
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Giovanni Neri
- Department of Engineering, University of Messina, Messina 98166, Italy
| | - Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Antonino Gulino
- Department of Chemical Sciences and INSTM Research Unit, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
2
|
Ghaedamini H, Kim DS. A non-enzymatic hydrogen peroxide biosensor based on cerium metal-organic frameworks, hemin, and graphene oxide composite. Bioelectrochemistry 2024; 161:108823. [PMID: 39332214 DOI: 10.1016/j.bioelechem.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study presents the development of a novel non-enzymatic electrochemical biosensor for the real-time detection of hydrogen peroxide (H2O2) based on a composite of cerium metal-organic frameworks (Ce-MOFs), hemin, and graphene oxide (GO). The Ce-MOFs served as an efficient matrix for hemin encapsulation, while GO enhanced the conductivity of the composite. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA) confirmed the successful integration of hemin into the Ce-MOFs. The Ce-MOFs@hemin/GO-modified sensor demonstrated sensitive H2O2 detection due to the exceptional electrocatalytic activity of Ce-MOFs@hemin and the high conductivity of GO. This biosensor exhibited a linear response to H2O2 concentrations from 0.05 to 10 mM with a limit of detection (LOD) of 9.3 μM. The capability of the biosensor to detect H2O2 released from human prostate carcinoma cells was demonstrated, highlighting its potential for real-time monitoring of cellular oxidative stress in complex biological environments. To further assess its practical applicability, the sensor was tested in human serum samples, yielding promising results with recovery values ranging from 94.50 % to 103.29 %. In addition, the sensor showed excellent selectivity against common interfering compounds due to the outstanding peroxidase-like activity of the composite.
Collapse
Affiliation(s)
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
3
|
Almeida CMR, Merillas B, Pontinha ADR. Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. Int J Mol Sci 2024; 25:1309. [PMID: 38279307 PMCID: PMC10816975 DOI: 10.3390/ijms25021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Aerogels are unique solid-state materials composed of interconnected 3D solid networks and a large number of air-filled pores. This structure leads to extended structural characteristics as well as physicochemical properties of the nanoscale building blocks to macroscale, and integrated typical features of aerogels, such as high porosity, large surface area, and low density, with specific properties of the various constituents. Due to their combination of excellent properties, aerogels attract much interest in various applications, ranging from medicine to construction. In recent decades, their potential was exploited in many aerogels' materials, either organic, inorganic or hybrid. Considerable research efforts in recent years have been devoted to the development of aerogel-based biosensors and encouraging accomplishments have been achieved. In this work, recent (2018-2023) and ground-breaking advances in the preparation, classification, and physicochemical properties of aerogels and their sensing applications are presented. Different types of biosensors in which aerogels play a fundamental role are being explored and are collected in this manuscript. Moreover, the current challenges and some perspectives for the development of high-performance aerogel-based biosensors are summarized.
Collapse
Affiliation(s)
- Cláudio M. R. Almeida
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- LAQV-REQUIMTE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Beatriz Merillas
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Ana Dora Rodrigues Pontinha
- University of Coimbra, ISISE, ARISE, Department of Civil Engineering, 3030-788 Coimbra, Portugal
- SeaPower, Associação Para o Desenvolvimento da Economia do Mar, Rua Das Acácias, N° 40A, Parque Industrial Da Figueira Da Foz, 3090-380 Figueira Da Foz, Portugal
| |
Collapse
|
4
|
Zhang F, Jia Y, Chen F, Zhao Y, Li L, Chang Z. Tumor-targeted bioactive nanoprobes visualizing of hydrogen peroxide for forecasting chemotherapy-exacerbated malignant prognosis. Front Bioeng Biotechnol 2023; 11:1226680. [PMID: 37635993 PMCID: PMC10450909 DOI: 10.3389/fbioe.2023.1226680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: Fluorescent visualization of hydrogen peroxide in the tumor microenvironment (TME) is conducive to predicting malignant prognosis after chemotherapy. Two photon microscopy has been employed for in vivo hydrogen peroxide detection owing to its advantages of deep penetration and low phototoxicity. Methods: In this study, a two-photon fluorescent probe (TPFP) was protected by mesoporous silica nanoparticles (MSNs) and masked by cloaking the cancer cell membranes (CM), forming a tumor-targeted bioactive nanoprobe, termed MSN@TPFP@CM. Results: This multifunctional nanoprobe allowed for the effective and selective detection of excessive hydrogen peroxide production in chemotherapeutic Etoposide (VP-16)-challenged tumor cells using two-photon microscopy. After specific accumulation in tumors, VP-16-MSN@TPFP@CM monitored tumor-specific hydrogen peroxide levels and revealed a positive correlation between oxidative stress in the TME and chemotherapy-exacerbated malignant prognosis. Discussion: Given the recent translation of fluorescent imaging into early clinical trials and the high biocompatibility of bioactive nanoprobes, our approach may pave the way for specific imaging of oxidative stress in solid tumors after treatment and provide a promising technology for malignant prognosis predictions.
Collapse
Affiliation(s)
- Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Yong Jia
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Yawei Zhao
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| |
Collapse
|
5
|
He C, Zhao J, Long Y, Yang H, Dong J, Liu H, Hu Z, Yang M, Huo D, Hou C. An ultrasensitive electrochemical biosensor for microRNA-21 detection via AuNPs/GAs and Y-shaped DNA dual-signal amplification strategy. Chem Commun (Camb) 2023; 59:350-353. [PMID: 36514997 DOI: 10.1039/d2cc06329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a gold nanoparticles/graphene aerogels (AuNPs/GAs) modified electrochemical biosensor with catalytic hairpin assembly (CHA) and Y-shaped DNA nanostructure dual-signal amplification approaches for ultrasensitive microRNA-21 (miR-21) detection was successfully constructed, which displayed an ultra-wide detection linear range from 5 fM to 50 nM, as well as a relatively low detection limit (LOD) of 14.70 aM (S/N = 3). Furthermore, the sensing strategy had excellent specificity among highly homologous miRNA family members and exhibited satisfactory analytical performance for miRNA detection.
Collapse
Affiliation(s)
- Congjuan He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yanyi Long
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, P. R. China
| | - Zhikun Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
6
|
Ubaidah Noh T, Abd. Aziz A, Mahmad A, Badrol N. Impedance–based haptenation of skin sensitizers with self–assembled monolayer of gold nanoparticles and cysteine modified screen printed carbon electrode. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wu Y, Guo K, Zhao J, Duan Q, Wang F, Lu K. Highly sensitive and selective electrochemical detection of clothianidin using reduced graphene oxide-anionic pillar[6]arene composite film. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
9
|
Noh TU, Aziz AA. The correlation of haptenation of gold nanoparticles and cysteine modified screen printed carbon electrode by impedance technique with local lymph node assay data. Toxicol In Vitro 2022; 84:105433. [PMID: 35817266 DOI: 10.1016/j.tiv.2022.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
Skin sensitization occurs when a skin sensitizer binds covalently to skin proteins through the haptenation process. The objective of this study was to correlate the electrochemical impedance spectroscopy (EIS) data of a screen printed carbon electrode (SPCE) modified with cysteine and gold nanoparticles (AuNPs) with local lymph node assay (LLNA) data as a potential skin sensitizer biosensor. The EIS was used to quantify variations in charge transfer resistance of skin sensitizers (ΔRCTskin sensitizer) due to different binding rates of skin sensitizers to cysteine. SPCE was modified through electrodeposition of AuNPs/thiourea/self-assembly of AuNPs/cysteine (assigned as ETSC) for the detection of skin sensitizers. Surface analysis of modified SPCEs using FESEM and EDX revealed a smooth surface with an uneven distribution of cysteine with AuNPs molecules. The ETSC modified SPCE showed a significant skin sensitizer biosensor since the ΔRCTskin sensitizer readings were increased proportionally to the strength of the skin sensitizers, with strong/extreme skin sensitizers displaying higher ΔRCTskin sensitizer readings compared to moderate and weak/non-skin sensitizers. The skin sensitization analysis from this work was compared to LLNA (animal study), human cell line activation (h-CLAT), direct peptide reactivity assay (DPRA), and KeratinoSens™, surface plasmon resonance (SPR) matched the categorization of LLNA in the following descending order: 96%, 92%, 82%, 70%, 70%, and 12%. With just an 8% mismatch with LLNA data, the EIS approach used in this study could be used as a screening tool for skin sensitizers.
Collapse
Affiliation(s)
- Teh Ubaidah Noh
- Bioprocess and Polymer Engineering Department, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Azila Abd Aziz
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
10
|
Ultrasensitive detection and application of estradiol based on nucleic acid aptamer and circulating amplification technology. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (H 2O 2) Released from Cancer Cells. NANOMATERIALS 2022; 12:nano12091475. [PMID: 35564184 PMCID: PMC9103167 DOI: 10.3390/nano12091475] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Cancer is by far the most common cause of death worldwide. There are more than 200 types of cancer known hitherto depending upon the origin and type. Early diagnosis of cancer provides better disease prognosis and the best chance for a cure. This fact prompts world-leading scientists and clinicians to develop techniques for the early detection of cancer. Thus, less morbidity and lower mortality rates are envisioned. The latest advancements in the diagnosis of cancer utilizing nanotechnology have manifested encouraging results. Cancerous cells are well known for their substantial amounts of hydrogen peroxide (H2O2). The common methods for the detection of H2O2 include colorimetry, titration, chromatography, spectrophotometry, fluorimetry, and chemiluminescence. These methods commonly lack selectivity, sensitivity, and reproducibility and have prolonged analytical time. New biosensors are reported to circumvent these obstacles. The production of detectable amounts of H2O2 by cancerous cells has promoted the use of bio- and electrochemical sensors because of their high sensitivity, selectivity, robustness, and miniaturized point-of-care cancer diagnostics. Thus, this review will emphasize the principles, analytical parameters, advantages, and disadvantages of the latest electrochemical biosensors in the detection of H2O2. It will provide a summary of the latest technological advancements of biosensors based on potentiometric, impedimetric, amperometric, and voltammetric H2O2 detection. Moreover, it will critically describe the classification of biosensors based on the material, nature, conjugation, and carbon-nanocomposite electrodes for rapid and effective detection of H2O2, which can be useful in the early detection of cancerous cells.
Collapse
|
12
|
Siao YJ, Peng CC, Tung YC, Chen YF. Comparison of Hydrogen Peroxide Secretion From Living Cells Cultured in Different Formats Using Hydrogel-Based LSPR Substrates. Front Bioeng Biotechnol 2022; 10:869184. [PMID: 35464720 PMCID: PMC9031350 DOI: 10.3389/fbioe.2022.869184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Reactive oxygen species (ROS), a number of reactive molecules and free radicals derived from molecular oxygen, are generated as by-products during mitochondrial electron transport within cells. Physiologically, cells are capable of metabolizing the ROS exploiting specific mechanisms. However, if excessive ROS accumulate inside the cells, it will cause the cells apoptosis or necrosis. Hydrogen peroxide (H2O2) is one of the essential ROS often participating in chemical reactions in organisms and regulating homeostasis in the body. Therefore, rapid and sensitive detection of H2O2 is a significant task in cell biology research. Furthermore, it has been found that cells cultured in different formats can result in different cellular responses and biological activities. In order to investigate the H2O2 secretion from the cells cultured in different formats, a hydrogel-based substrate is exploited to separate relatively large molecular (e.g., proteins) for direct measurement of H2O2 secreted from living cells in complete cell culture medium containing serum. The substrate takes advantage of the localized surface plasmon resonance (LSPR) method based on enzyme immunoprecipitation. In addition, the H2O2 secreted from the cells cultured in different dimensions (suspension of single cells and three-dimensional cell spheroids) treated with identical drugs is measured and compared. The spheroid samples can be prepared with ample amount using a designed microfluidic device with precise control of size. The results show that the H2O2 secretion from the cells are great affected by their culture formats.
Collapse
Affiliation(s)
- Yang-Jyun Siao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chung Tung
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- *Correspondence: Yi-Chung Tung, ; Yih-Fan Chen,
| | - Yih-Fan Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- *Correspondence: Yi-Chung Tung, ; Yih-Fan Chen,
| |
Collapse
|
13
|
Sheng K, Jiang H, Fang Y, Wang L, Jiang D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Noh TU, Abdul-Aziz A. Haptenation of skin sensitizers with cysteine and gold nanoparticles modified screen printed carbon electrode analyzed using impedance technique. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Mahmoudpour M, Dolatabadi JEN, Hasanzadeh M, Soleymani J. Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor. Adv Colloid Interface Sci 2021; 298:102550. [PMID: 34695619 DOI: 10.1016/j.cis.2021.102550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/21/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Carbon based aerogels are special solid-state materials comprised of interconnected networks of 3D nanostructures with high amount of air-filled nanoporous. They expand the structural properties along with physicochemical characteristics of nanoscale construction blocks to macroscale, and incorporate distinctive attributes of aerogels, like large surface area, high porosity, and low density, with particular features of the different constituents. These features impart aerogels with rapid response signal, high selectivity, and ultra-sensitivity for sensing diverse targets in biomedical media. This has prompted researchers to develop a variety of aerogel-based sensors with encouraging achievements. Hence, this work outlines sensing applications of aerogel-based sensors with a comprehensive overview on the carbon aerogel hybrid materials and their analytical performances. Authors tried to list advantages and limitations of the developed approach and introduced more potent research for possible devices designing. We also point out some challenges and future perspectives related to the improvement of high-efficiency aerogel-based sensors.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron 2021; 197:113732. [PMID: 34741959 DOI: 10.1016/j.bios.2021.113732] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
CRISPR diagnostics (CRISPR-Dx) offer a wide range of enhancements compared to traditional nanobiosensors by taking advantage of the excellent trans-cleavage activity of the CRISPR/Cas systems. However, the single-stranded DNA/RNA reporters of the current CRISPR-Dx suffer from poor stability and limited sensitivity, which make their application in complex biological environments difficult. In comparison, nanomaterials, especially metal nanoparticles, exhibits robust stability and desirable optical and electrocatalytical properties, which make them ideal as reporter molecules. Therefore, biosensing research is moving towards the use of the trans-cleavage activity of CRISPR/Cas effectors on metal nanoparticles and apply the new phenomenon to develop novel nanobiosensors to target various targets such as viral infections, genetic mutations and tumor biomarkers, by using different sensing methods, including, but not limited to fluorescence, luminescence resonance, colorimetric and electrochemical signal readout. In this review, we explore some of the most recent advances in the field of CRISPR-powered nanotechnological biosensors. Demonstrating high accuracy, sensitivity, selectivity and versatility, nanobiosensors along with CRISPR/Cas technology offer tremendous potential for next-generation diagnostics of multiple targets, especially at the point of care and without any target amplification.
Collapse
Affiliation(s)
- Quynh Anh Phan
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA; Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Linh B Truong
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Can Dincer
- Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, 79110, Germany; FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Jacquet M, Izzo M, Osella S, Kozdra S, Michałowski PP, Gołowicz D, Kazimierczuk K, Gorzkowski MT, Lewera A, Teodorczyk M, Trzaskowski B, Jurczakowski R, Gryko DT, Kargul J. Development of a universal conductive platform for anchoring photo- and electroactive proteins using organometallic terpyridine molecular wires. NANOSCALE 2021; 13:9773-9787. [PMID: 34027945 DOI: 10.1039/d0nr08870f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of an efficient conductive interface between electrodes and electroactive proteins is a major challenge in the biosensor and bioelectrochemistry fields to achieve the desired nanodevice performance. Concomitantly, metallo-organic terpyridine wires have been extensively studied for their great ability to mediate electron transfer over a long-range distance. In this study, we report a novel stepwise bottom-up approach for assembling bioelectrodes based on a genetically modified model electroactive protein, cytochrome c553 (cyt c553) and an organometallic terpyridine (TPY) molecular wire self-assembled monolayer (SAM). Efficient anchoring of the TPY derivative (TPY-PO(OH)2) onto the ITO surface was achieved by optimising solvent composition. Uniform surface coverage with the electroactive protein was achieved by binding the cyt c553 molecules via the C-terminal His6-tag to the modified TPY macromolecules containing Earth abundant metallic redox centres. Photoelectrochemical characterisation demonstrates the crucial importance of the metal redox centre for the determination of the desired electron transfer properties between cyt and the ITO electrode. Even without the cyt protein, the ITO-TPY nanosystem reported here generates photocurrents whose densities are 2-fold higher that those reported earlier for ITO electrodes functionalised with the photoactive proteins such as photosystem I in the presence of an external mediator, and 30-fold higher than that of the pristine ITO. The universal chemical platform for anchoring and nanostructuring of (photo)electroactive proteins reported in this study provides a major advancement for the construction of efficient (bio)molecular systems requiring a high degree of precise supramolecular organisation as well as efficient charge transfer between (photo)redox-active molecular components and various types of electrode materials.
Collapse
Affiliation(s)
- Margot Jacquet
- Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao P, Chen S, Yang M, Wang Y, Luo H, Huo D, Ji Z, Hou C. A novel multifunctional platform based on ITO/APTES/ErGO/AuNPs for long-term cell culture and real-time biomolecule monitoring. Talanta 2021; 228:122232. [PMID: 33773736 DOI: 10.1016/j.talanta.2021.122232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
Integrating long-term cell culture with real-time electrochemical monitoring is a promising strategy for future studies of physiological and pathological processes. However, great challenges still remain in fabricating such a platform with satisfactory electrochemical performance as well as desirable biocompatibility. Herein, we proposed a novel multifunctional platform based on gold nanoparticles/electrochemically reduced graphene oxide/3-aminopropyl-triethoxysilane modified indium tin oxide plate (ITO/APTES/ErGO/AuNPs). The unique biological and electrical properties of AuNPs and ErGO endow the platform with superior electrocatalytic activity and desirable biocompatibility. As a proof of concept, the present platform showed satisfactory electrochemical performance for sensitive and selective detection of hydrogen peroxide (H2O2) with a sensitivity about 0.25 μA μM-1 cm-2 and a detection limit of 0.38 μM in a linear range of 0.5-1461 μM. And the principle of catalytic reduction was clarified through density functional calculations (DFT). Furthermore, cells grew on the platform exhibited excellent proliferation ability and considerable viability after a long-term cultivation. Based on those desirable performances, in-situ and real-time monitoring of endogenously produced H2O2 released from cancer cells cultured on the platform has been successfully realized, which will be of great significance in pathophysiology research.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Sha Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Zhong Ji
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
19
|
Borah N, Boruah PK, Kalita AJ, Guha AK, Das MR, Tamuly C. A novel method for the rapid sensing of H 2O 2 using a colorimetric AuNP probe and its DFT study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2055-2065. [PMID: 33955980 DOI: 10.1039/d1ay00355k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen peroxide (H2O2) has tremendous applications in industry, medicine and in our day-to-day lives. It is toxic to human health upon exposure at a high concentration. Therefore, a green and cost-effective sensing technique is greatly needed for the sensitive naked eye detection of peroxide. This study is mainly focused on the synthesis of Au nanoparticles (AuNPs) using an aqueous extract of Elsholtzia blanda, a flower that is widely available in the North Eastern part of India, the characterization of which was carried out using different analytical techniques. The bioactive molecule (epigallocatechin gallate) present in the aqueous extract was identified, isolated and confirmed through high-performance liquid chromatography-photodiode array, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy analysis which could be responsible for the reduction of Au3+ ions. By approaching this greener route, the synthesized nanomaterial was further used as a colorimetric probe for the detection of H2O2 and the degradation of AuNPs was observed. The limit of detection was found to be 0.7435 μM in the present work. The degradation of the AuNPs was found to be linearly dependent on peroxide concentration. Along with these results, kinetic studies were carried out by considering different effects to monitor the sensing speed of the AuNPs. The plausible mechanism of the work was supported by density functional theory study.
Collapse
Affiliation(s)
- Nirangkush Borah
- Natural Product Chemistry Section, CSIR-North East Institute of Science and Technology. Branch Itanagar, Arunachal Pradesh 791110, India.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Heme proteins take part in a number of fundamental biological processes, including oxygen transport and storage, electron transfer, catalysis and signal transduction. The redox chemistry of the heme iron and the biochemical diversity of heme proteins have led to the development of a plethora of biotechnological applications. This work focuses on biosensing devices based on heme proteins, in which they are electronically coupled to an electrode and their activity is determined through the measurement of catalytic currents in the presence of substrate, i.e., the target analyte of the biosensor. After an overview of the main concepts of amperometric biosensors, we address transduction schemes, protein immobilization strategies, and the performance of devices that explore reactions of heme biocatalysts, including peroxidase, cytochrome P450, catalase, nitrite reductase, cytochrome c oxidase, cytochrome c and derived microperoxidases, hemoglobin, and myoglobin. We further discuss how structural information about immobilized heme proteins can lead to rational design of biosensing devices, ensuring insights into their efficiency and long-term stability.
Collapse
|
21
|
Nanocluster-assisted protein-film voltammetry for direct electrochemical signal acquisition. Anal Bioanal Chem 2021; 413:1665-1673. [PMID: 33501552 DOI: 10.1007/s00216-020-03130-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Acquisition of the direct electrochemical response of protein is the cornerstone for the development of the third generation of electrochemical biosensors. In this work, we developed a nanocluster-assisted protein-film voltammetry technique (NCA-PFV) which can achieve the acquisition of the electrochemical signal and maintain the activity without affecting of the protein's structure. With this strategy, a lipid bilayer membrane is used to immobilize the membrane protein so as to maintain its natural state. Copper nanoclusters with a size smaller than most proteins are then used to function at sub-protein scale and to mediate the electron hopping from the electroactive center of the electrode. As a model, the direct electrochemical signal of cyclooxygenase (COX) is successfully obtained, with a pair of well-defined redox peaks located at -0.39 mV and -0.31 mV, which characterize the heme center of the enzyme. Its catalytic activity towards the substrate arachidonic acid (AA) is also retained. The detection range for AA is 10-1000 μM and the detection limit is 2.4 μM. Electrochemical monitoring of the regulation of the catalytic activity by an inhibitor DuP-697 is also achieved. This work provides a powerful tool for the fabrication of enzyme-based electrochemical biosensors, and is also of great significance for promoting the development and application of next-generation electrochemical biosensors.
Collapse
|
22
|
Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. BIOSENSORS 2021; 11:30. [PMID: 33498809 PMCID: PMC7911324 DOI: 10.3390/bios11020030] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
Collapse
Affiliation(s)
| | - Eveline J Farrell
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|