1
|
Szewczyk J, Iatsunskyi I, Michałowski PP, Załęski K, Lamboux C, Sayegh S, Makhoul E, Cabot A, Chang X, Bechelany M, Coy E. TiO 2/PDA Multilayer Nanocomposites with Exceptionally Sharp Large-Scale Interfaces and Nitrogen Doping Gradient. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10774-10784. [PMID: 38350850 PMCID: PMC10910457 DOI: 10.1021/acsami.3c18935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
The evolving field of photocatalysis requires the development of new functional materials, particularly those suitable for large-scale commercial systems. One particularly promising approach is the creation of hybrid organic/inorganic materials. Despite being extensively studied, materials such as polydopamine (PDA) and titanium oxide continue to show significant promise for use in such applications. Nitrogen-doped titanium oxide and free-standing PDA films obtained at the air/water interface are particularly interesting. This study introduces a straightforward and reproducible approach for synthesizing a novel class of large-scale multilayer nanocomposites. The method involves the alternate layering of high-quality materials at the air/water interface combined with precise atomic layer deposition techniques, resulting in a gradient nitrogen doping of titanium oxide layers with exceptionally sharp oxide/polymer interfaces. The analysis confirmed the presence of nitrogen in the interstitial and substitutional sites of the TiO2 lattice while maintaining the 2D-like structure of the PDA films. These chemical and structural characteristics translate into a reduction of the band gap by over 0.63 eV and an increase in the photogenerated current by over 60% compared with pure amorphous TiO2. Furthermore, the nanocomposites demonstrate excellent stability during the 1 h continuous photocurrent generation test.
Collapse
Affiliation(s)
- Jakub Szewczyk
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
- Institut
Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier
Cedex 5, France
| | - Igor Iatsunskyi
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Paweł Piotr Michałowski
- Łukasiewicz
Research Network—Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Karol Załęski
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Cassandre Lamboux
- Institut
Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier
Cedex 5, France
| | - Syreina Sayegh
- Institut
Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier
Cedex 5, France
| | - Elissa Makhoul
- Institut
Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier
Cedex 5, France
| | - Andreu Cabot
- Advanced
Materials Department, Catalonia Institute
for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Xingqi Chang
- Advanced
Materials Department, Catalonia Institute
for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
| | - Mikhael Bechelany
- Institut
Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier
Cedex 5, France
- Gulf University
for Science and Technology, GUST, 32093 Hawally, Kuwait
| | - Emerson Coy
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| |
Collapse
|
2
|
Efficient “on-off” photo-electrochemical sensing platform based on titanium dioxide nanotube arrays decorated with silver doped tin oxide for ultra-sensitive quercetin detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Luo D, Fu Q, Gao R, Su L, Su Y, Liu B. Signal-on photoelectrochemical immunoassay for salivary cortisol based on silver nanoclusters-triggered ion-exchange reaction with CdS quantum dots. Anal Bioanal Chem 2022; 414:3033-3042. [PMID: 35190841 PMCID: PMC8860362 DOI: 10.1007/s00216-022-03893-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022]
Abstract
Nowadays, the epidemic, employment, and academic pressures are seriously affecting our physical and mental health. Herein, we designed a magneto-controlled photoelectrochemical immunosensor for noninvasive monitoring of salivary cortisol regarded as a pressure biomarker. A competitive immunoassay model was established by coupling bovine serum albumin-cortisol modified magnetic beads (MB-BSA-cortisol) with silver nanoclusters (Ag NCs)-labelled anti-cortisol antibody, and quantity analysis was operated by photoelectrochemical measurement of the CdS/Au electrode as an ion-exchange platform. Accompanying the formation of immune complexes, the carried Ag NCs were readily dissolved with nitric acid to produce abundant silver ions, which transferred to the electrode for ion-exchange reaction with CdS quantum dots to produce Ag2S, a new electron–hole capture site, leading to a decrease in the photocurrent intensity. The photocurrent signal gradually recovered with the increase of concentration of target cortisol, acquiring the signal-on mode competitive immunosensing system, which is propitious to the detection of small molecules. Within optimal conditions, this sensor had a satisfactory linear relationship in the range of 0.0001–100 ng mL−1 with favorable repeatability, specificity, and acceptable method accuracy. The detection limit was as low as 0.06 pg mL−1. In addition, this strategy provided new thought for the test of other small-molecule analytes and immunosensor applied in the complex biological system.
Collapse
Affiliation(s)
- Dajuan Luo
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Qiuping Fu
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang, 550005, China
| | - Rong Gao
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Lixia Su
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Yonghuan Su
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Bingqian Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|