1
|
Raghavendra P, Chandra Sekhar Y, Sri Chandana P, Subramanyam Sarma L. Reduced graphene oxide (RGO)-supported AuCore–PdShell nanocomposite electrocatalyst for facile formic acid oxidation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Caglar A, Faruk Er O, Aktas N, Kivrak H. The effect of different carbon-based CdTe alloys for efficient photocatalytic glucose electrooxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Juárez-Marmolejo L, Maldonado-Teodocio B, de Oca-Yemha MM, Romero-Romo M, Arce-Estrada E, Ezeta-Mejía A, Ramírez-Silva M, Mostany J, Palomar-Pardavé M. Electrocatalytic oxidation of formic acid by palladium nanoparticles electrochemically synthesized from a deep eutectic solvent. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Formic Acid Dehydrogenation Using Noble-Metal Nanoheterogeneous Catalysts: Towards Sustainable Hydrogen-Based Energy. Catalysts 2022. [DOI: 10.3390/catal12030324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The need for sustainable energy sources is now more urgent than ever, and hydrogen is significant in the future of energy. However, several obstacles remain in the way of widespread hydrogen use, most of which are related to transport and storage. Dilute formic acid (FA) is recognized asa a safe fuel for low-temperature fuel cells. This review examines FA as a potential hydrogen storage molecule that can be dehydrogenated to yield highly pure hydrogen (H2) and carbon dioxide (CO2) with very little carbon monoxide (CO) gas produced via nanoheterogeneous catalysts. It also present the use of Au and Pd as nanoheterogeneous catalysts for formic acid liquid phase decomposition, focusing on the influence of noble metals in monometallic, bimetallic, and trimetallic compositions on the catalytic dehydrogenation of FA under mild temperatures (20–50 °C). The review shows that FA production from CO2 without a base by direct catalytic carbon dioxide hydrogenation is far more sustainable than existing techniques. Finally, using FA as an energy carrier to selectively release hydrogen for fuel cell power generation appears to be a potential technique.
Collapse
|
5
|
Jung WS, Han J. Enhanced stability of PdPtAu alloy catalyst for formic acid oxidation. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Caglar A, Kivrak H. Superior formic acid electrooxidation activity on carbon nanotube‐supported binary Pd nanocatalysts prepared via sequential sodium borohydride reduction technique. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Aykut Caglar
- Faculty of Engineering, Department of Chemical Engineering Van Yuzuncu Yil University Van Turkey
| | - Hilal Kivrak
- Faculty of Engineering, Department of Chemical Engineering Van Yuzuncu Yil University Van Turkey
- Faculty of Engineering and Architectural Science, Department of Chemical Engineering Eskisehir Osmangazi University Eskişehir Turkey
| |
Collapse
|
7
|
Affiliation(s)
- Zhenni Ma
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ulrich Legrand
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Jason R. Tavares
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
- Canada Research Chair in Intensified Mechano-Chemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| |
Collapse
|
8
|
A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride: the effect of Mo addition and estimation of kinetic parameters. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01884-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|