1
|
Huang G, Ye H, Mo X, Hao R, Huang G, Liang J, Wang D, Xiao X, Zhu W. Coating Fe 3O 4 quantum dots with glutamic acid to achieve enhanced catalysis for facile and sensitive detection of chromium(VI) in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7161-7168. [PMID: 39297415 DOI: 10.1039/d4ay01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
A universal green synthesis approach for Glu-Fe3O4 quantum dots (QDs) with ultrasmall size (∼3.3 nm) and enhanced catalysis was demonstrated using glutamic acid (Glu) as a dopant. Abundant carboxylic groups and amino groups on the surfaces with a zeta potential of -6.28 mV resulted in greatly improved environmental stability. The Glu-Fe3O4 QDs exhibited oxidoreductase-like catalytic activity. The steady-state kinetic assays indicated that the QDs had a high binding affinity for the substrate TMB. A facile and sensitive colorimetric platform was developed using the Glu-Fe3O4 QDs for the detection of Cr(VI) in naturally sourced water and waste water, which showed a detection limit of 31.02 nM, much lower than the maximum Cr(VI) level permitted in drinking water by the World Health Organization (WHO) and the industrial water threshold. This universal green synthesis approach and the unique catalytic activity of Fe3O4 QDs open a new horizon in materials chemistry and the development of colorimetric biosensors for environmental protection and public health.
Collapse
Affiliation(s)
- Guidan Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.
| | - Hongying Ye
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.
| | - Xuejian Mo
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.
| | - Ruizheng Hao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.
| | - Guanhui Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.
| | - Jinhua Liang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.
| | - Deqiang Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Xiaofen Xiao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Wenyuan Zhu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.
| |
Collapse
|
2
|
Qiao Y, Han Y, Guan R, Liu S, Bi X, Liu S, Cui W, Zhang T, He T. Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. FRONTIERS OF MATERIALS SCIENCE 2023; 17:230631. [PMID: 36911597 PMCID: PMC9991883 DOI: 10.1007/s11706-023-0631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The "encapsulate-and-deliver" strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.
Collapse
Affiliation(s)
- Yunping Qiao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Yanyang Han
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Rengui Guan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Shiliang Liu
- Weifang Branch Company, Shandong HI-speed Transportation Construction Group Co., Ltd., Qingzhou, 262500 China
| | - Xinling Bi
- Shandong Jinhai Titanium Resources Technology Co., Ltd., Binzhou, 256600 China
| | - Shanshan Liu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Wei Cui
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| |
Collapse
|
3
|
Liu Y, Sun S, Tan S, Hu E, Gao C, Fan L, Wang QC, Wang C, Yang XQ, Han J, Guo R. Enhancing lithium storage performance of bimetallic oxides anode by synergistic effects. J Colloid Interface Sci 2023; 641:386-395. [PMID: 36940595 DOI: 10.1016/j.jcis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Spinel bimetallic transition metal oxide anode such as ZnMn2O4, has drawn increasing interest due to attractive bimetal interaction and high theoretical capacity. While it suffers from huge volume expansion and poor ionic/electronic conductivity. Nanosizing and carbon modification can alleviate these issues, while the optimal particle size within host is unclear yet. We here propose an in-situ confinement growth strategy to fabricate pomegranate-structured ZnMn2O4 nanocomposite with calculated optimal particle size in mesoporous carbon host. Theoretical calculations reveal favorable interatomic interactions between the metal atoms. By the synergistic effects of structural merits and bimetal interaction, the optimal ZnMn2O4 composite achieves greatly improved cycling stability (811 mAh g-1 at 0.2 A g-1 after 100 cycles), which can maintain its structural integrity upon cycling. X-ray absorption spectroscopy analysis further confirms delithiated Mn species (Mn2O3 but little MnO). Briefly, this strategy brings new opportunity to ZnMn2O4 anode, which could be adopted to other conversion/alloying-type electrodes.
Collapse
Affiliation(s)
- Yingwei Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Siwei Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Sha Tan
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Cong Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qin-Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiao-Qing Yang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Sun S, Wang C, Wang QC, Liu Y, Xie Q, Zeng Z, Li X, Han J, Guo R. Three-in-one oxygen-deficient titanium dioxide in a pomegranate-inspired design for improved lithium storage. J Colloid Interface Sci 2023; 633:546-554. [PMID: 36470135 DOI: 10.1016/j.jcis.2022.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Defects engineering has played an ever-increasing important role in electrochemistry, especially secondary lithium batteries. TiO2 is regarded as a promising anode due to its attractive cycling stability, low volume strain and great abundance, while challenges of intrinsic poor electrical and ionic conductivity remain to be addressed. Herein, we report a three-in-one oxygen vacancy (VO)-involved pomegranate design for TiO2-x/C composite anode, which provides highly improved electrical conduction, shortened Li+ pathway and promoted Li+ redox. N-doped mesoporous carbon acts as a robust scaffold to support the whole structure, electron highway and efficient reductant to generate VO on TiO2 nanoparticles during crystallization. Theoretical calculations reveal the crucial role of surface VO on TiO2 in Li electrochemistry. Resultantly, the optimal TiO2-x/C anode achieves significantly enhanced cycling performance (203 mAh/g retained after 2000 cycles at 1 A/g). Postmortem analysis reveals the robustness of VO and reasonable structure stability upon cycles for improved battery performance.
Collapse
Affiliation(s)
- Siwei Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Qin-Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Yingwei Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qihong Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhiyong Zeng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaoge Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
The construction of scale-like Fe7S8/C composite nanotubes and their electrochemical properties. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Chu H, Sun X, Zha X, Khan SU, Wang Y. Ultrasensitive Electrochemical Detection of Butylated Hydroxy Anisole via Metalloporphyrin Covalent Organic Frameworks Possessing Variable Catalytic Active Sites. BIOSENSORS 2022; 12:bios12110975. [PMID: 36354484 PMCID: PMC9688419 DOI: 10.3390/bios12110975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 06/07/2023]
Abstract
Three novel two-dimensional metalloporphyrin COFs (MPor-COF-366, M = Fe, Mn, Cu) were fabricated by changing the metal atoms in the center of the porphyrin framework. The physicochemical characteristics of MPor-COF-366 (M = Fe, Mn, Cu) composites were fully analyzed by diverse electron microscopy and spectroscopy. Under optimal conditions, experiments on determining butylated hydroxy anisole (BHA) at FePor-COF-366/GCE were conducted using differential pulse voltammetry (DPV). It is noted that the FePor-COF-366/GCE sensor showed excellent electrocatalytic performance in the electrochemical detection of BHA, compared with MnPor-COF-366/GCE and CuPor-COF-366/GCE. A linear relationship was obtained for 0.04-1000 μM concentration of BHA, with a low detection limit of 0.015 μM. Additionally, the designed sensor was successfully employed to detect BHA in practical samples, expanding the development of COF-based composites in electrochemical applications.
Collapse
Affiliation(s)
- Huacong Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xin Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaoqian Zha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shifa Ullah Khan
- The Institute of Chemistry, Faculty of Science, University of Okara, Renala Campus, Punjab 56300, Pakistan
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
7
|
Xie B, Wu X, Wang J, Wang R, Dong Y, Hou J, Lv R, Chen M, Diao G. Confinement sacrifice template synthesis of size controllable heterogeneous double-layer hollow spheres SnO2@Void@HCSs as anode for Li+/Na+ batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Huang J, Dai Q, Cui C, Ren H, Lu X, Hong Y, Woo Joo S. Cake-like porous Fe3O4@C nanocomposite as high-performance anode for Li-ion battery. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ying H, Chen T, Zhang C, Bi J, Li Z, Hao J. Regeneration of porous Fe 3O 4 nanosheets from deep eutectic solvent for high-performance electrocatalytic nitrogen reduction. J Colloid Interface Sci 2021; 602:64-72. [PMID: 34118606 DOI: 10.1016/j.jcis.2021.05.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
The production of ammonia through electrocatalytic nitrogen reduction reaction (NRR) is environmentally friendly and energy-saving, but it still suffers from the low NH3 yield rate and poor selectivity. Herein, enlightened by the unique solubility of Fe3O4 in deep eutectic solvent (DES), we, for the first time, reported a DES-based regeneration strategy to fabricate porous Fe3O4 nanosheets utilizing commercial Fe3O4 powder as raw materials. The as-regenerated porous Fe3O4 nanosheets exhibited satisfactory electrocatalytic performance toward NRR, affording a NH3 yield rate of 12.09 μg h-1 mg-1cat along with an outstanding Faradaic efficiency (FE) of 34.38% at -0.1 V versus reversible hydrogen electrode (RHE), in the 0.1 M Na2SO4 electrolyte. The superior electrocatalytic activity of the as-regenerated Fe3O4 nanosheets mainly resulted from their unique sheet-like morphology with large active surface area, high porosity, and abundant oxygen vacancies. Our proposed DES-based regeneration strategy opens a new avenue for the construction of high-performance electrocatalyst from commercial raw materials, holding great promise in NRR.
Collapse
Affiliation(s)
- Hao Ying
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Tingting Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Chenyun Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jiahui Bi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Zhonghao Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| |
Collapse
|