1
|
Gundry L, Kennedy G, Keith J, Robinson M, Gavaghan D, Bond AM, Zhang J. A Comparison of Bayesian Inference Strategies for Parameterisation of Large Amplitude AC Voltammetry Derived from Total Current and Fourier Transformed Versions. ChemElectroChem 2021. [DOI: 10.1002/celc.202100391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luke Gundry
- School of Chemistry Monash University Clayton Vic. 3800 Australia
| | - Gareth Kennedy
- School of Chemistry Monash University Clayton Vic. 3800 Australia
| | - Jonathan Keith
- School of Mathematics Monash University Clayton Vic. 3800 Australia
| | - Martin Robinson
- Department of Computer Science University of Oxford, Wolfson Building Parks Road Oxford OX1 3QD United Kingdom
| | - David Gavaghan
- Department of Computer Science University of Oxford, Wolfson Building Parks Road Oxford OX1 3QD United Kingdom
| | - Alan M. Bond
- School of Chemistry Monash University Clayton Vic. 3800 Australia
| | - Jie Zhang
- School of Chemistry Monash University Clayton Vic. 3800 Australia
| |
Collapse
|
2
|
Gundry L, Guo SX, Kennedy G, Keith J, Robinson M, Gavaghan D, Bond AM, Zhang J. Recent advances and future perspectives for automated parameterisation, Bayesian inference and machine learning in voltammetry. Chem Commun (Camb) 2021; 57:1855-1870. [PMID: 33529293 DOI: 10.1039/d0cc07549c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced data analysis tools such as mathematical optimisation, Bayesian inference and machine learning have the capability to revolutionise the field of quantitative voltammetry. Nowadays such approaches can be implemented routinely with widely available, user-friendly modern computing languages, algorithms and high speed computing to provide accurate and robust methods for quantitative comparison of experimental data with extensive simulated data sets derived from models proposed to describe complex electrochemical reactions. While the methodology is generic to all forms of dynamic electrochemistry, including the widely used direct current cyclic voltammetry, this review highlights advances achievable in the parameterisation of large amplitude alternating current voltammetry. One significant advantage this technique offers in terms of data analysis is that Fourier transformation provides access to the higher order harmonics that are almost devoid of background current. Perspectives on the technical advances needed to develop intelligent data analysis strategies and make them generally available to users of voltammetry are provided.
Collapse
Affiliation(s)
- Luke Gundry
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Si-Xuan Guo
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Gareth Kennedy
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Jonathan Keith
- School of Mathematics, Monash University, Clayton, Vic. 3800, Australia
| | - Martin Robinson
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - David Gavaghan
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
| |
Collapse
|
3
|
Abstract
Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.
Collapse
Affiliation(s)
- Tadaharu Ueda
- Department of Marine Resource Science Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan. .,Center for Advanced Marine Core Research, Kochi University, Nankoku, 783-8502, Japan.
| |
Collapse
|