1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Gao C, Chen P, Ma Y, Sun L, Yan Y, Ding Y, Sun L. Multifunctional polylactic acid biocomposite film for active food packaging with UV resistance, antioxidant and antibacterial properties. Int J Biol Macromol 2023; 253:126494. [PMID: 37625746 DOI: 10.1016/j.ijbiomac.2023.126494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Antibacterial packaging used to control the growth of microorganisms in food is of great value for prolonging the shelf life of food. In this study, a bio-based antibacterial agent PDI based on zwitterionic and stereochemical synergistic antibacterial was designed and synthesized, and it was simultaneously introduced into polylactic acid (PLA) matrix with antioxidant o-vanillin (oVL) and plasticizer glycerol (GL). A series of PLA/oVL/PDI composite membranes with antibacterial, antioxidant and anti-ultraviolet properties were prepared by solution casting method. The results showed that the mechanical properties of the composite film were significantly improved compared with pure PLA (tensile strength increased by 37 %, elongation at break increased by 209 %), which was mainly attributed to the microphase separation structure induced by synthetic bio-based antibacterial agent, which improved the mechanical strength of PLA matrix, and the hydrogen bond formed by glycerol, o-vanillin and carbonyl group in PLA molecules plasticized PLA matrix. At the same time, the antibacterial rate of PLA/oVL/PDI composite membrane against Escherichia coli and Staphylococcus aureus can reach >95 %. Packaging experiments showed that PLA/oVL/PDI series composite films could effectively extend the shelf life of fresh bananas and apples for 5 days, and had great application prospects in preservative food packaging.
Collapse
Affiliation(s)
- Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Picheng Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ying Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Luyang Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuling Yan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Yu Ding
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States.
| | - Lishui Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
3
|
Ishimatsu R, Furukawa Y, Nakano K. Development of a facile time-resolved spectroelectrochemical method: An application to determine the rate constant of protonation for anions of 9,10-diphenylanthracene, biphenyl, and p-quaterphenyl. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Olmo F, Rodriguez A, Colina A, Heras A. UV/Vis absorption spectroelectrochemistry of folic acid. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05026-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractUV/Vis absorption spectroelectrochemistry is a very promising analytical technique due to the complementary information that is simultaneously obtained from electrochemistry and spectroscopy. In this work, this technique is used in a parallel configuration to study the oxidation of folic acid in alkaline medium. Herein, UV/Vis absorption spectroelectrochemistry has been used to detect both the oxidation products and the folic acid consumed at the electrode/solution interface, allowing us to develop an analytical protocol to quantify vitamin B9 in pharmaceutical tablets. Linear ranges of three orders of magnitude have been achieved in basic medium (pH = 12.9), obtaining high repeatability and low detection limits. The spectroelectrochemical determination of folic acid in pharmaceutical tablets at alkaline pH values is particularly interesting because of the changes that occur in the optical signal during the electrochemical oxidation of FA, providing results with very good figures of merit and demonstrating the utility and versatility of this hyphenated technique, UV/Vis absorption spectroelectrochemistry.
Collapse
|
5
|
Nesterova OV, Vassilyeva OY, Skelton BW, Bieńko A, Pombeiro AJL, Nesterov DS. A novel o-vanillin Fe(III) complex catalytically active in C-H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals. Dalton Trans 2021; 50:14782-14796. [PMID: 34595485 DOI: 10.1039/d1dt02366g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel complex [FeIIICl(L)2(H2O)] (1) was synthesized by interaction of iron(III) chloride with ethanol solution of o-vanillin (HL) and characterized by IR, UV/Vis spectroscopy, thermogravimetry and single crystal X-ray diffraction analysis. The molecules of 1 in the solid state are joined into supramolecular dimeric units, where a set of strong hydrogen bonds predefines the structure of the dimer according to the "key-lock" principle. From the Hirshfield surface analysis the contribution of π⋯π stacking to the overall stabilization of the dimer was found to be negligible. Broken symmetry DFT calculations suggested the presence of long-range antiferromagnetic interactions (J = -0.12 cm-1 for H = -JS1S2 formalism) occurring through the Fe-O⋯O-Fe pathway, as evidenced by the studies of the model dimers where the water molecules were substituted by acetonitrile and acetone ones. The benchmark studies using a set of literature examples and various DFT functionals revealed the hybrid-GGA B3LYP as the best one for prediction of FeIII⋯FeIII antiferromagnetic exchange couplings of small magnitude. Magnetic susceptibility measurements confirmed antiferromagnetic coupling between the metal atoms in 1 with a coupling constant of -0.35 cm-1. Catalytic studies demonstrated that 1 acts as an efficient catalyst in the oxidation of cyclohexane with hydrogen peroxide in the presence of nitric acid promoter and under mild conditions (yield up to 37% based on the substrate), while tert-butylhydroperoxide (TBHP) and m-chloroperoxybenzoic acid (m-CPBA) as oxidants exhibit less efficiency. Combined UV/TDDFT studies evidence the structural rearrangement of 1 in acetonitrile with the formation of [FeIIICl(L)2(CH3CN)] species. The TDDFT benchmark using nine common DFT functionals and two model compounds (o-vanillin and [FeIII(H2O)6]3+ ion) support the hybrid meta-GGA M06-2X functional as the one most correctly predicting the excited state structure for the Fe(III) complexes, under the conditions studied.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., Kyiv 01601, Ukraine.
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
6
|
Holubowitch NE, Crabtree C, Budimir Z. Electroanalysis and Spectroelectrochemistry of Nonaromatic Explosives in Acetonitrile Containing Dissolved Oxygen. Anal Chem 2020; 92:11617-11626. [PMID: 32786478 DOI: 10.1021/acs.analchem.0c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In search of a rapid, low-cost, and solution-phase detection technique for explosives, the (spectro-)electrochemistry of compounds from two major nonaromatic classes, namely nitramines (RDX and HMX) and nitrate esters (pentaerythritol tetranitrate (PETN) and the plastic explosive composite Semtex 1A) in acetonitrile (AN) is reported. In electrochemical screening, 5 μg of explosive material was detectable in 10 s by multicomponent cyclic voltammetric (CV) analysis on unmodified glassy carbon under ubiquitous environmental influences (i.e., trace water and dissolved oxygen). The explosives were identified with high recoveries under a battery of proof-of-concept testing scenarios in various matrices. In AN containing naturally dissolved oxygen (approx. 2 mM), the superoxide radical is co-electrogenerated during analyte reduction. Free superoxide yields prominent signals that the explosives attenuate quantitatively. To gain further insight into the electrochemical transformation mechanism, spectroelectrochemistry was employed to monitor changes in ultraviolet (UV) absorbance during CV and identify transient intermediates and product species, which could be targeted by future chemical sensors. Overlapping UV spectra of multiple species are deconvoluted using a new strategy, spectral regional baselining, for time- and potential-resolved spectroelectrochemical (SEC) analysis. This study shows that dissolved oxygen, hitherto an interferent purposefully removed from the solution, can be exploited advantageously in electrochemical sensing. The work expands our understanding of high-explosive solution-phase chemistry and offers a novel route to signal transduction for the sensing of energetic materials.
Collapse
Affiliation(s)
- Nicolas E Holubowitch
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| | - Cameo Crabtree
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| | - Zachary Budimir
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| |
Collapse
|