1
|
Khoiruddin K, Wenten IG, Siagian UWR. Advancements in Bipolar Membrane Electrodialysis Techniques for Carbon Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9362-9384. [PMID: 38680122 DOI: 10.1021/acs.langmuir.3c03873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Bipolar membrane electrodialysis (BMED) is a promising technology for the capture of carbon dioxide (CO2) from seawater, offering a sustainable solution to combat climate change. BMED efficiently extracts CO2 while generating valuable byproducts like hydrogen and minerals, contributing to the carbon cycle. The technology relies on ion-exchange membranes and electric fields for efficient ion separation and concentration. Recent advancements focus on enhancing water dissociation in bipolar membranes (BPMs) to improve efficiency and durability. BMED has applications in desalination, electrodialysis, water splitting, acid/base production, and CO2 capture and utilization. Despite the high efficiency, scalability, and environmental friendliness, challenges such as energy consumption and membrane costs exist. Recent innovations include novel BPM designs, catalyst integration, and exploring direct air/ocean capture. Research and development efforts are crucial to unlocking BMED's full potential in reducing carbon emissions and addressing environmental issues. This review provides a comprehensive overview of recent advancements in BMED, emphasizing its role in carbon capture and sustainable environmental solutions.
Collapse
Affiliation(s)
- K Khoiruddin
- Department of Chemical Engineering, Institut Teknologi Bandung (ITB), Jalan Ganesa No. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
| | - I G Wenten
- Department of Chemical Engineering, Institut Teknologi Bandung (ITB), Jalan Ganesa No. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
| | - Utjok W R Siagian
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
2
|
Lee JM, Kang MS. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. MEMBRANES 2023; 13:888. [PMID: 38132892 PMCID: PMC10744961 DOI: 10.3390/membranes13120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
In this study, the optimal fabrication parameters of a heterogeneous anion-exchange membrane (AEM) using an ionomer binder are investigated to improve the performance of continuous electrodeionization (CEDI) for producing ultrapure water. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is selected as the base material for preparing the ionomer binder and quaternized to have various ion exchange capacities (IECs). The optimal content of ion-exchange resin (IER) powder according to the IEC of the ionomer binder is then determined through systematic analyses. In conclusion, it is revealed that a heterogeneous AEM with optimal performance can be fabricated when the IEC of the ionomer binder is lowered and the content of IER powder is also lower than that of conventional heterogeneous membranes. Moreover, crosslinked quaternized PPO (QPPO) nanofiber powder is used as an additive to improve ion conductivity without deteriorating the mechanical properties of the membrane. The membrane fabricated under optimal conditions exhibits significantly lower electrical resistance (4.6 Ω cm2) despite a low IER content (30 wt%) compared to the commercial membrane (IONAC MA-3475, 13.6 Ω cm2) while also demonstrating moderate tensile strength (9.7 MPa) and a high transport number (ca. 0.97). Furthermore, it is proven that the prepared membrane exhibits a superior ion removal rate (99.86%) and lower energy consumption (0.35 kWh) compared to the commercial membrane (99.76% and 0.4 kWh, respectively) in CEDI experiments.
Collapse
Affiliation(s)
| | - Moon-Sung Kang
- Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea;
| |
Collapse
|
3
|
Baklouti L, Larchet C, Hamdi A, Hamdi N, Baraket L, Dammak L. Research on Membranes and Their Associated Processes at the Université Paris-Est Créteil: Progress Report, Perspectives, and National and International Collaborations. MEMBRANES 2023; 13:252. [PMID: 36837755 PMCID: PMC9959974 DOI: 10.3390/membranes13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Research on membranes and their associated processes was initiated in 1970 at the University of Paris XII/IUT de Créteil, which became in 2010 the University Paris-Est Créteil (UPEC). This research initially focused on the development and applications of pervaporation membranes, then concerned the metrology of ion-exchange membranes, then expanded to dialysis processes using these membranes, and recently opened to composite membranes and their applications in production or purification processes. Both experimental and fundamental aspects have been developed in parallel. This evolution has been reinforced by an opening to the French and European industries, and to the international scene, especially to the Krasnodar Membrane Institute (Kuban State University-Russia) and to the Department of Chemistry, (Qassim University-Saudi Arabia). Here, we first presented the history of this research activity, then developed the main research axes carried out at UPEC over the 2012-2022 period; then, we gave the main results obtained, and finally, showed the cross contribution of the developed collaborations. We avoided a chronological presentation of these activities and grouped them by theme: composite membranes and ion-exchange membranes. For composite membranes, we have detailed three applications: highly selective lithium-ion extraction, bleach production, and water and industrial effluent treatments. For ion-exchange membranes, we focused on their characterization methods, their use in Neutralization Dialysis for brackish water demineralization, and their fouling and antifouling processes. It appears that the research activities on membranes within UPEC are very dynamic and fruitful, and benefit from scientific exchanges with our Russian partners, which contributed to the development of strong membrane activity on water treatment within Qassim University. Finally, four main perspectives of this research activity were given: the design of autonomous and energy self-sufficient processes, refinement of characterization by Electrochemical Scanning Microscopy, functional membrane separators, and green membrane preparation and use.
Collapse
Affiliation(s)
- Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Christian Larchet
- ICMPE, CNRS, Université Paris-Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Abdelwaheb Hamdi
- Department of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Naceur Hamdi
- Department of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Leila Baraket
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha P.O. Box 1988, Saudi Arabia
| | - Lasâad Dammak
- ICMPE, CNRS, Université Paris-Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
4
|
Kozmai A, Porozhnyy M, Ruleva V, Gorobchenko A, Pismenskaya N, Nikonenko V. Is It Possible to Prepare a "Super" Anion-Exchange Membrane by a Polypyrrole-Based Modification? MEMBRANES 2023; 13:103. [PMID: 36676909 PMCID: PMC9865286 DOI: 10.3390/membranes13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In spite of wide variety of commercial ion-exchange membranes, their characteristics, in particular, electrical conductivity and counterion permselectivity, are unsatisfactory for some applications, such as electrolyte solution concentration. This study is aimed at obtaining an anion-exchange membrane (AEM) of high performance in concentrated solutions. An AEM is prepared with a polypyrrole (PPy)-based modification of a heterogeneous AEM with quaternary ammonium functional groups. Concentration dependences of the conductivity, diffusion permeability and Cl− transport number in NaCl solutions are measured and simulated using a new version of the microheterogeneous model. The model describes changes in membrane swelling with increasing concentration and the effect of these changes on the transport characteristics. It is assumed that PPy occupies macro- and mesopores of the host membrane where it replaces non-selective electroneutral solution. Increasing conductivity and selectivity are explained by the presence of positively charged PPy groups. It is found that the conductivity of a freshly prepared membrane reaches 20 mS/cm and the chloride transport number > 0.99 in 4 M NaCl. A choice of input parameters allows quantitative agreement between the experimental and simulation results. However, PPy has shown itself to be an unstable material. This article discusses what parameters a membrane can have to show such exceptional characteristics.
Collapse
|
5
|
Nichka VS, Mareev SA, Apel PY, Sabbatovskiy KG, Sobolev VD, Nikonenko VV. Modeling the Conductivity and Diffusion Permeability of a Track-Etched Membrane Taking into Account a Loose Layer. MEMBRANES 2022; 12:1283. [PMID: 36557191 PMCID: PMC9786269 DOI: 10.3390/membranes12121283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/31/2023]
Abstract
The microheterogeneous model makes it possible to describe the main transport properties of ion-exchange membranes using a single set of input parameters. This paper describes an adaptation of the microheterogeneous model for describing the electrical conductivity and diffusion permeability of a track-etched membrane (TEM). Usually, the transport parameters of TEMs are evaluated assuming that ion transfer occurs through the solution filling the membrane pores, which are cylindrical and oriented normally to the membrane surface. The version of the microheterogeneous model developed in this paper takes into account the presence of a loose layer, which forms as an intermediate layer between the pore solution and the membrane bulk material during track etching. It is assumed that this layer can be considered as a "gel phase" in the framework of the microheterogeneous model due to the fixed hydroxyl and carboxyl groups, which imparts ion exchange properties to the loose layer. The qualitative and quantitative agreement between the calculated and experimental concentration dependencies of the conductivity and diffusion permeability is discussed. The role of the model input parameters is described in relation to the structural features of the membrane. In particular, the inclination of the pores relative to the surface and their narrowing in the middle part of the membrane can be important for their properties.
Collapse
Affiliation(s)
- Vladlen S. Nichka
- Physical Chemistry Department, Membrane Institute, Kuban State University, Krasnodar 350040, Russia
| | - Semyon A. Mareev
- Physical Chemistry Department, Membrane Institute, Kuban State University, Krasnodar 350040, Russia
| | - Pavel Yu. Apel
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Konstantin G. Sabbatovskiy
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir D. Sobolev
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Moscow 119071, Russia
| | - Victor V. Nikonenko
- Physical Chemistry Department, Membrane Institute, Kuban State University, Krasnodar 350040, Russia
| |
Collapse
|
6
|
Salmeron-Sanchez I, Asenjo-Pascual J, Avilés-Moreno JR, Ocón P. Microstructural description of ion exchange membranes: The effect of PPy-based modification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Rezayani M, Sharif F, Netz RR, Makki H. Insight into the relationship between molecular morphology and water/ion diffusion in cation exchange membranes: Case of partially sulfonated polyether sulfone. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Pismenskaya N, Bdiri M, Sarapulova V, Kozmai A, Fouilloux J, Baklouti L, Larchet C, Renard E, Dammak L. A Review on Ion-Exchange Membranes Fouling during Electrodialysis Process in Food Industry, Part 2: Influence on Transport Properties and Electrochemical Characteristics, Cleaning and Its Consequences. MEMBRANES 2021; 11:membranes11110811. [PMID: 34832040 PMCID: PMC8623251 DOI: 10.3390/membranes11110811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Ion-exchange membranes (IEMs) are increasingly used in dialysis and electrodialysis processes for the extraction, fractionation and concentration of valuable components, as well as reagent-free control of liquid media pH in the food industry. Fouling of IEMs is specific compared to that observed in the case of reverse or direct osmosis, ultrafiltration, microfiltration, and other membrane processes. This specificity is determined by the high concentration of fixed groups in IEMs, as well as by the phenomena inherent only in electromembrane processes, i.e., induced by an electric field. This review analyzes modern scientific publications on the effect of foulants (mainly typical for the dairy, wine and fruit juice industries) on the structural, transport, mass transfer, and electrochemical characteristics of cation-exchange and anion-exchange membranes. The relationship between the nature of the foulant and the structure, physicochemical, transport properties and behavior of ion-exchange membranes in an electric field is analyzed using experimental data (ion exchange capacity, water content, conductivity, diffusion permeability, limiting current density, water splitting, electroconvection, etc.) and modern mathematical models. The implications of traditional chemical cleaning are taken into account in this analysis and modern non-destructive membrane cleaning methods are discussed. Finally, challenges for the near future were identified.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
- Correspondence: ; Tel.: +33-145171786
| |
Collapse
|