1
|
Pérez-García JA, Bacame-Valenzuela FJ, Espejel-Ayala F, Ortiz-Frade L, Reyes-Vidal Y. Effect of adsorption of pyocyanin on the electron transfer rate at the interface of a glassy carbon electrode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
Hwan Shin J, Rana Gul A, Seop Hyun M, Choi CH, Jung Park T, Pil Park J. Electrochemical detection of caspase-3 based on a chemically modified M13 phage virus. Bioelectrochemistry 2022; 145:108090. [DOI: 10.1016/j.bioelechem.2022.108090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
|
3
|
Carbon Nano-Onion Peroxidase Composite Biosensor for Electrochemical Detection of 2,4-D and 2,4,5-T. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon nano-onions are emerging electrode materials in biosensing due to their high conductivity and biocompatibility. Phenoxy-based herbicides are a source of environmental contamination that can be detected using their property to inhibit the activity of some enzymes. Here we report a biosensor based on peroxidase immobilized on carbon nano-onions in a cyclodextrin polymer matrix for the amperometric detection of 2,4-D and 2,4,5-T. The inhibition mechanism of 2,4-D and 2,4,5-T on peroxidase activity was first elucidated by activity measurements and molecular docking. The biosensor was characterized by electrochemical and microscopy methods and applied to the amperometric detection of these herbicides. The incorporation of carbon nano-onions enhanced the sensitivity of the biosensor and improved its stability and repeatability. The application of the developed biosensor to the detection of 2,4-D in soil and 2,4,5-T in river water samples is also reported.
Collapse
|