1
|
Kumar Manna B, Samanta R, Kumar Trivedi R, Chakraborty B, Barman S. Hydrogen spillover inspired bifunctional Platinum/Rhodium Oxide-Nitrogen-Doped carbon composite for enhanced hydrogen evolution and oxidation reactions in base. J Colloid Interface Sci 2024; 670:258-271. [PMID: 38763022 DOI: 10.1016/j.jcis.2024.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The poor activity of Pt-based-catalysts for alkaline hydrogen oxidation/evolution reaction (HOR/HER) encourages scientific society to design an effective electrocatalyst to develop alkaline fuel cells/electrolyzers. Herein, platinum/rhodium oxide-nitrogen-doped carbon (Pt/Rh2O3-CNx) composite is prepared for alkaline HER and HOR inspired by hydrogen spillover. The HER performance of Pt/Rh2O3-CNx is ∼ 6 times higher than Pt/C. In HOR, Pt/Rh2O3-CNx possesses an exchange current density of 657.60 mA/mgmetal, which is ∼ 3.4 times higher than Pt/C. Hydrogen and hydroxyl binding energy (HBE and OHBE) contribute equally to alkaline HOR/HER. The experimental and theoretical evidence suggests that the enhanced HER and HOR activity of Pt/Rh2O3-CNx may be due to hydrogen spillover from Pt to Rh2O3. Small work function difference [0.08 eV] of the system suggested hydrogen-spillover is feasible, which has been justified by reaction-free energy calculations. We proposed that the dissociation of hydrogen (H2) and water (H2O) occurs at Pt to form Pt-adsorbed hydrogen species (Pt-Had). Then, some Had moves to Rh2O3 through hydrogen spillover and reacts with neighboring Had or adsorbed hydroxyl species (OHad) to form H2 or H2O, which enhances the HER and HOR activity, respectively. The role of water-metal-hydroxyl species in the electrical double layer was also demonstrated on alkaline HOR/HER. This work may help to design the hydrogen-spillover-based catalysts for several renewable energy technologies.
Collapse
Affiliation(s)
- Biplab Kumar Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajib Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ravi Kumar Trivedi
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Centre for High Energy Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India; High Pressure & amp, Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Park J, Kim H, Kim S, Yi SY, Min H, Choi D, Lee S, Kim J, Lee J. Boosting Alkaline Hydrogen Oxidation Activity of Ru Single-Atom Through Promoting Hydroxyl Adsorption on Ru/WC 1- x Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308899. [PMID: 37910632 DOI: 10.1002/adma.202308899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Indexed: 11/03/2023]
Abstract
The sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline conditions continue to pose a significant challenge for the practical implementation of anion-exchange membrane fuel cells. Developing single-atom catalysts can accelerate the pace of new HOR catalyst discovery for highly cost-effective and active HOR performance. However, single-atom catalysts (SACs) for the alkaline HOR have rarely been reported, and fundamental studies on the rational design of SACs are still required. Herein, the design of Ru SAC supported on the tungsten carbide (Ru SA/WC1- x ) via in situ high-temperature annealing strategy is reported. The resulting Ru SA/WC1- x catalyst exhibits remarkably enhanced HOR performance in alkaline media, a level of activity that can not be achieved with carbon-supported Ru SAC. Electrochemical results and density functional theory demonstrate that promoting the hydroxyl adsorption on Ru SA/WC1- x interfaces, which is derived from the low potential of zero charge of WC1- x support, has a significant effect on enhancing the HOR performance of SACs. This enhancement leads to 5.8 and 60.1 times higher Ru mass activity of Ru SA/WC1- x than Ru nanoparticles on carbon and Ru single-atom on N-doped carbon, respectively. This work provides new insights into the design of highly active SACs for alkaline HOR.
Collapse
Affiliation(s)
- Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Honghui Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hakyung Min
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Ke X, Zhou F, Chen Y, Zhao M, Yang Y, Jin H, Dong Y, Zou C, Chen X, Zhang L, Wang S. Modifying charge transfer between rhodium and ceria for boosted hydrogen oxidation reaction in alkaline electrolyte. J Colloid Interface Sci 2023; 650:1842-1850. [PMID: 37515974 DOI: 10.1016/j.jcis.2023.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline solution has restricted the rapid development of hydrogen economy. Constructing catalyst with metal-oxide heterostructures can enhance HOR performance; however, little studies concentrate on charge transfer between them, and the corresponding effects on reactions remain unclear. Herein, we report charge-transfer-adjustable CeO2/Rh interfaces uniformly dispersed on multiwalled carbon nanotube (CNT), which exhibit excellent alkaline HOR performance. Results confirm that the charge transfer from Rh to CeO2 could be conveniently tuned via thermal treatment. Consequently, the adsorption free energies of H* in Rh sites and OH* adsorption strength in CeO2 could be adjusted, as corroborated by density functional theory study. The optimized CeO2/Rh interfaces exhibit an exchange current density and a mass-specific kinetic current of 0.53 mA cmPGM-2 and 830 A gPGM-1 at an overpotential of 50 mV, respectively, which surpasses most of the advanced noble-metal-based electrocatalysts. This work provides a new insight of harnessing charge transfer of heterostructure to enhance catalytic activities.
Collapse
Affiliation(s)
- Xiaofeng Ke
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Feng Zhou
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, PR China.
| | - Yihuang Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Yun Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Youqing Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Chao Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China; Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, PR China.
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, PR China; Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, PR China.
| |
Collapse
|
4
|
Garzón Manjón A, Vega-Paredes M, Berova V, Gänsler T, Schwarz T, Rivas Rivas NA, Hengge K, Jurzinsky T, Scheu C. Insights into the performance and degradation of Ru@Pt core-shell catalysts for fuel cells by advanced (scanning) transmission electron microscopy. NANOSCALE 2022; 14:18060-18069. [PMID: 36448460 DOI: 10.1039/d2nr04869h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ru@Pt core-shell nanoparticles are currently being explored as carbon monoxide tolerant anode catalysts for proton exchange membrane fuel cells. However, little is known about their degradation under fuel cell conditions. In the present work, two types of Ru@Pt nanoparticles with nominal shell thicknesses of 1 (Ru@1Pt) and 2 (Ru@2Pt) Pt monolayers are studied as synthesized and after accelerated stress tests. These stress tests were designed to imitate the degradation occurring under fuel cell operating conditions. Our advanced (scanning) transmission electron microscopy characterization explains the superior initial electrochemical performance of Ru@1Pt. Moreover, the 3D reconstruction of the Pt shell by electron tomography reveals an incomplete shell for both samples, which results in a less stable Ru metal being exposed to an electrolyte. The degree of coverage of the Ru cores provides insights into the higher stability of Ru@2Pt during the accelerated stress tests. Our results explain how to maximize the initial performance of Ru@Pt-type catalysts, without compromising their stability under fuel cell conditions.
Collapse
Affiliation(s)
- Alba Garzón Manjón
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Miquel Vega-Paredes
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Viktoriya Berova
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Thomas Gänsler
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Torsten Schwarz
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Nicolas A Rivas Rivas
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Katharina Hengge
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Tilman Jurzinsky
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
5
|
Enhanced Performance of Sn@Pt Core-Shell Nanocatalysts Supported on Two Different Carbon Structures for the Hydrogen Oxidation Reaction in Acid Media. J CHEM-NY 2022. [DOI: 10.1155/2022/2982594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sn@Pt core-shell nanocatalysts, supported on Vulcan XC-72 and home-developed nitrogen-doped graphene (Sn@Pt/C and Sn@Pt/NG, respectively), were evaluated for the hydrogen oxidation reaction (HOR) in acid electrolyte. The nanocatalysts were synthesized by the bromide anion exchange (BAE) method. TEM characterization confirmed the nanosize nature of Sn@Pt/C and Sn@Pt/NG, with an average particle size of 2.1 and 2.3 nm, respectively. Sn@Pt/C delivered a similar mass limiting current density (jl, m) of the HOR compared to Sn@Pt/NG, which was higher than those of Pt/C and Pt/NG (ca. 2 and 2.3-fold increase, respectively). Moreover, the Sn@Pt/C and Sn@Pt/NG core-shell nanocatalysts demonstrated a higher specific activity related to Pt/C and Pt/NG. Mass and specific Tafel slopes further demonstrated the improved catalytic activity of Sn@Pt/C for the HOR, followed by Sn@Pt/NG. The application of the nanocatalysts was proposed for polymer electrolyte membrane fuel cells (PEMFC).
Collapse
|
6
|
Lin XM, Wang XT, Deng YL, Chen X, Chen HN, Radjenovic PM, Zhang XG, Wang YH, Dong JC, Tian ZQ, Li JF. In Situ Probe of the Hydrogen Oxidation Reaction Intermediates on PtRu a Bimetallic Catalyst Surface by Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. NANO LETTERS 2022; 22:5544-5552. [PMID: 35699945 DOI: 10.1021/acs.nanolett.2c01744] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In situ monitoring of the evolution of intermediates and catalysts during hydrogen oxidation reaction (HOR) processes and elucidating the reaction mechanism are crucial in catalysis and energy science. However, spectroscopic information on trace intermediates on catalyst surfaces is challenging to obtain due to the complexity of interfacial environments and lack of in situ techniques. Herein, core-shell nanoparticle-enhanced Raman spectroscopy was employed to probe alkaline HOR processes on representative PtRu surfaces. Direct spectroscopic evidence of an OHad intermediate and RuOx (Ru(+3)/Ru(+4)) surface oxides is simultaneously obtained, verifying that Ru doping onto Pt promotes OHad adsorption on the RuOx surface to react with Had adsorption on the Pt surface to form H2O. In situ Raman, XPS, and DFT results reveal that RuOx coverage tunes the electronic structure of PtRuOx to optimize the adsorption energy of OHad on catalyst surfaces, leading to an improvement in HOR activity. Our findings provide mechanistic guidelines for the rational design of HOR catalysts with high activity.
Collapse
Affiliation(s)
- Xiu-Mei Lin
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yong-Liang Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xing Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hao-Ning Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
7
|
Feng Y, Han W, Wang T, Chen Q, Zhang Y, Sun Y, Zhang X, Yang L, Chen S, Xu Y, Tang H, Zhang B, Wang H. Nano-Sized PtRu/C Electrocatalyst With Separated Phases and High Dispersion Improves Electrochemical Performance of Hydrogen Oxidation Reaction. Front Chem 2022; 10:885965. [PMID: 35711957 PMCID: PMC9194480 DOI: 10.3389/fchem.2022.885965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alloys and core-shell nanoparticles have recently received enormous attention which opened up new avenues for highly active catalysts. Despite considerable advances in this field, the majority of proposed approaches suffer from either complicated procedures or unstable structures, severely hindering their practical applications. Here, we successfully synthesized alloy electrocatalyst with separated phases, PtRu alloy nanoparticles robustly supported by carbon matrix (PtRu/C), using a convenient two-step solvothermal method. The constructed PtRu/C at different NaOH contents (0–1.25 mmol) were compared and electrochemical activity were evaluated by the hydrogen oxidation reaction (HOR). In contrast, the homogeneous distribution and minimum average size of Ru and Pt nanoparticles on carbon, appeared at approximately 4 nm, proving that PtRu/C-0.75 possessed abundant accessible active sites. The catalytic activities and the reaction mechanism were studied via electrochemical techniques. PtRu/C-0.75 has excellent activity due to its unique electronic structure and efficient charge transfer, with the largest j0 value of 3.68 mA cm−2 in the HOR.
Collapse
Affiliation(s)
- Yiling Feng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Wei Han
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
- School of Chemistry and Chemical Engineering, Guizhou Minzu University, Guizhou, China
| | - Tingyu Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
- School of Chemistry and Chemical Engineering, Guizhou Minzu University, Guizhou, China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yonggang Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Song Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
- *Correspondence: Song Chen,
| | - YuXiang Xu
- Jiangsu Ancan Technology Co., Ltd, Yancheng, China
| | - Hong Tang
- Jiangsu Ancan Technology Co., Ltd, Yancheng, China
| | - Bing Zhang
- Jiangsu Ancan Technology Co., Ltd, Yancheng, China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
8
|
Yao ZC, Tang T, Jiang Z, Wang L, Hu JS, Wan LJ. Electrocatalytic Hydrogen Oxidation in Alkaline Media: From Mechanistic Insights to Catalyst Design. ACS NANO 2022; 16:5153-5183. [PMID: 35420784 DOI: 10.1021/acsnano.2c00641] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the potential to circumvent the need for scarce and cost-prohibitive platinum-based catalysts in proton-exchange membrane fuel cells, anion-exchange membrane fuel cells (AEMFCs) are emerging as alternative technologies with zero carbon emission. Numerous noble metal-free catalysts have been developed with excellent catalytic performance for cathodic oxygen reduction reaction in AEMFCs. However, the anodic catalysts for hydrogen oxidation reaction (HOR) still rely on noble metal materials. Since the kinetics of HOR in alkaline media is 2-3 orders of magnitude lower than that in acidic media, it is a major challenge to either improve the performance of noble metal catalysts or to develop high-performance noble metal-free catalysts. Additionally, the mechanisms of alkaline HOR are not yet clear and still under debate, further hampering the design of electrocatalysts. Against this backdrop, this review starts with the prevailing theories for alkaline HOR on the basis of diverse activity descriptors, i.e., hydrogen binding energy theory and bifunctional theory. The design principles and recent advances of HOR catalysts employing the aforementioned theories are then summarized. Next, the strategies and recent progress in improving the antioxidation capability of HOR catalysts, a thorny issue which has not received sufficient attention, are discussed. Moreover, the significance of correlating computational models with real catalyst structure and the electrode/electrolyte interface is further emphasized. Lastly, the remaining controversies about the alkaline HOR mechanisms as well as the challenges and possible research directions in this field are presented.
Collapse
Affiliation(s)
- Ze-Cheng Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Zhe Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhang B, Wang W, Liu C, Han L, Peng J, Oleinick A, Svir I, Amatore C, Tian Z, Zhan D. Surface Diffusion of Underpotential‐Deposited Lead Adatoms on Gold Nanoelectrodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- College of Chemistry and Chemical Engineering Jinggangshan University Ji'an 343009 Jiangxi China
| | - Cheng Liu
- College of Chemistry and Chemical Engineering Jinggangshan University Ji'an 343009 Jiangxi China
| | - Lianhuan Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Juan Peng
- Department of Chemistry College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Alexander Oleinick
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Irina Svir
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- PASTEUR Département de Chimie École Normale Supérieure PSL University Sorbonne Université CNRS 24 rue Lhomond 75005 Paris France
| | - Zhong‐Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry, College of Chemistry and Chemical Engineering Department of Mechanical and Electrical Engineering School of Aerospace Engineering Xiamen University Xiamen 361005 China
- Department of Chemistry College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| |
Collapse
|