1
|
Tao H, Jia T, Zhang L, Li X, Li P, Zhou Y, Zhai C. Tandem effect at snowflake-like cuprous sulphide interfaces for highly selective conversion of carbon dioxide to formate by electrochemical reduction. J Colloid Interface Sci 2024; 655:909-919. [PMID: 37979296 DOI: 10.1016/j.jcis.2023.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Electrochemical carbon dioxide reduction (ECR) is a commercially promising technology to resolve the energy dilemma and accomplish carbon recycling. Herein, a novel electrocatalyst has been investigated to produce formate (HCOOH) highly selectively during ECR by loading SnO2@C onto cuprous sulphide (Cu2S) to form a triplet effect at the interface. Snowflake-like Cu2S significantly enhances the local concentration of carbon dioxide (CO2) and promotes the binding of CO2 with SnO2, and the addition of carbon spheres enhances the electron transport, which is beneficial to the conversion of CO2 to HCOOH products. The snowflake-like Cu2S loaded with 1 wt% SnO2@C had an HCOOH Faraday Efficiency of 88% at -1.0 V (vs. Reversible Hydrogen Electrode, RHE), and the current density for CO2 reduction was stabilized at 15.6 mA cm-2, which was much higher than the HCOOH Faraday efficiency (FE) of 31.0% for pure Cu2S accompanied by a CO2 reduction current density of 3.9 mA cm-2. Combined investigations using in-situ Fourier transform infrared spectroscopy (FT-IR) with in-situ Raman spectra reveal that the active species is Cu+. Cu2S/1%SnO2@C can effectively promote the adsorption and activation of carbonate and inhibit the production of CO intermediates. The corresponding density functional theory (DFT) demonstrates that Cu2S/1%SnO2@C can well stabilize the HCOO* intermediate during the ECR process. The interaction between Cu2S and SnO2@C adjusts the surface electronic distribution and accelerates electron transfer, which efficiently improves CO2-to-HCOOH conversion. The result obtained from this work provides a simple and efficient electrocatalyst to enhance the HCOOH selectivity of ECR.
Collapse
Affiliation(s)
- Hengcong Tao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Tianbo Jia
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lina Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xin Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Panfeng Li
- ENN (ZhouShan) LNG Co.,Ltd, Zhoushan 316000, PR China
| | - Yingtang Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Zhang Y, Nie K, Yi L, Li B, Yuan Y, Liu Z, Huang W. Recent Advances in Engineering of 2D Materials-Based Heterostructures for Electrochemical Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302301. [PMID: 37743245 PMCID: PMC10625098 DOI: 10.1002/advs.202302301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Indexed: 09/26/2023]
Abstract
2D materials, such as graphene, transition metal dichalcogenides, black phosphorus, layered double hydroxides, and MXene, have exhibited broad application prospects in electrochemical energy conversion due to their unique structures and electronic properties. Recently, the engineering of heterostructures based on 2D materials, including 2D/0D, 2D/1D, 2D/2D, and 2D/3D, has shown the potential to produce synergistic and heterointerface effects, overcoming the inherent restrictions of 2D materials and thus elevating the electrocatalytic performance to the next level. In this review, recent studies are systematically summarized on heterostructures based on 2D materials for advanced electrochemical energy conversion, including water splitting, CO2 reduction reaction, N2 reduction reaction, etc. Additionally, preparation methods are introduced and novel properties of various types of heterostructures based on 2D materials are discussed. Furthermore, the reaction principles and intrinsic mechanisms behind the excellent performance of these heterostructures are evaluated. Finally, insights are provided into the challenges and perspectives regarding the future engineering of heterostructures based on 2D materials for further advancements in electrochemical energy conversion.
Collapse
Affiliation(s)
- Yujia Zhang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Kunkun Nie
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Lixin Yi
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Binjie Li
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Yanling Yuan
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Wei Huang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| |
Collapse
|
3
|
Liu Q, Wang S, Mo W, Zheng Y, Xu Y, Yang G, Zhong S, Ma J, Liu D, Bai S. Emerging Stacked Photocatalyst Design Enables Spatially Separated Ni(OH) 2 Redox Cocatalysts for Overall CO 2 Reduction and H 2 O Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104681. [PMID: 34914177 DOI: 10.1002/smll.202104681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Construction of photocatalytic systems with spatially separated dual cocatalysts is considered as a promising route to modulate charge separation/transfer, promote surface redox reactivities, and prevent unwanted reverse reactions. However, past efforts on the loading of spatially separated double-cocatalysts are limited to hollow structured semiconductors with inner/outer surface and monocrystalline semiconductors with different exposed facets. To overcome this limitation, herein, enabled by a unique stacked photocatalyst design, a facile and versatile strategy for spatial separation of redox cocatalysts on various semiconductors without structural and morphological restriction is demonstrated. The smart design begins with the deposition of light-harvesting semiconductors on reduced graphene oxide (rGO) nanosheets, followed with the coverage of Ni(OH)2 outer layer. The ternary photocatalysts exhibit superior activities and stabilities of H2 O oxidation and selective CO2 -to-CO reduction, remarkably surpassing other counterparts. The origin of the enhanced performance is attributed to the synergistic interplay of rGO@Ni(OH)2 reduction cocatalysts surrounding the semiconductors and Ni(OH)2 oxidation cocatalysts directly supported by the semiconductors, which mitigates the charge recombination, supplies highly active and selective sites for overall reactions, and preserves the semiconductors from photocorrosion. This work presents a new approach to regulating the position of dual cocatalysts and ameliorating the net efficiency of photoredox catalysis.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shihong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Weihao Mo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yanbo Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Guodong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Jun Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Dong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
4
|
Chen Q, Mo W, Yang G, Zhong S, Lin H, Chen J, Bai S. Significantly Enhanced Photocatalytic CO 2 Reduction by Surface Amorphization of Cocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102105. [PMID: 34558184 DOI: 10.1002/smll.202102105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Rational phase engineering of reduction cocatalyst offers a promising route to modulate the photocatalytic activity and selectivity in the conversion of CO2 to chemical feedstocks. However, it remains a great challenge to choose a suitable phase given that high-crystallinity phase is more conducive to the charge transfer and separation, while amorphous phase is more favorable for the adsorption and activation of CO2 molecules. To resolve this dilemma, herein, with Pd as a well-defined model, a surface amorphization strategy has been developed to fabricate crystalline@amorphous semi-core-shell cocatalysts based on the transformation of outer layer atoms of crystalline cocatalysts to disorder phase. According to the theoretical and experimental analysis, in the heterostructured cocatalysts, crystalline core shuttles the photoexcited electrons from light-harvesting semiconductor to amorphous shell due to its strong electronic coupling with both components. Meanwhile, amorphous shell provides efficient active sites for preferential activation and conversion of CO2 and suppression of undesirable proton reduction. Benefiting from the synergistic effects between crystalline core and amorphous shell, the optimized heterophase cocatalyst with suitable thickness of amorphous shell achieves superior CO (22.2 µmol gcat-1 h-1 ) and CH4 (38.1 µmol gcat-1 h-1 ) formation rates with considerable selectivity and high stability in comparison with crystalline and amorphous counterparts.
Collapse
Affiliation(s)
- Qin Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Weihao Mo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Guodong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|