1
|
Xiong T, Li X, Ma Z, Liu K, Li Y, Li C, Luo F, Yang Z. Modulation in work function of CoTe as bifunctional electrocatalyst for rechargeable zinc air battery. J Colloid Interface Sci 2024; 672:170-178. [PMID: 38838626 DOI: 10.1016/j.jcis.2024.05.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The sluggish kinetics and inferior stability of oxygen electrocatalyst in rechargeable zinc air battery (ZAB) hamper its industrialization. In this work, we activate cobalt telluride (CoTe) by introduction of metallic cobalt (Co) to modulate the work function to facilitate the electron transfer from Co to CoTe during oxygen catalysis; additionally, the three-dimensional porous carbon nanosheets (3DPC) are invited to reduce the resistance towards electrolyte/oxygen diffusion. Thereby, Co-CoTe@3DPC only demands 280 mV overpotential to reach 10 mA cm-2 under alkaline oxygen evolution reaction (OER) condition, relatively lower than commercial iridium oxides (IrO2); besides, the operando electrochemical impedance spectroscopy (EIS) indicates a better resistance towards surface reconstruction than Co@3DPC leading to a superior stability. A Pt-like oxygen reduction reaction (ORR) performance, half-wave potential associated with kinetic current density, is achieved for Co-CoTe@3DPC. A maximum power density of 203 mW cm-2 is achieved and sustains for 800 h. Furthermore, the all-solid-state ZAB offers 97 mW cm-2. Theoretical calculation suggests that the incorporation of metallic Co to CoTe maintains the superb ORR activity and promotes the OER catalysis.
Collapse
Affiliation(s)
- Tiantian Xiong
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China; Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Xianwei Li
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zhiyong Ma
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Kaiyi Liu
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Yi Li
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Chen Li
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Fang Luo
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Zehui Yang
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| |
Collapse
|
2
|
Zhang R, Zhang Q, Yang J, Yu S, Yang X, Luo X, He Y. Ultrasensitive detection strategy for CAP by molecularity imprinted SERS sensor based on multiple synergistic enhancement of SiO 2@AuAg with MOFs@Au signal carrier. Food Chem 2024; 445:138717. [PMID: 38354642 DOI: 10.1016/j.foodchem.2024.138717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Chloramphenicol (CAP) residue in food can cause great harm to human health, it is important to develop a rapid and sensitive method to detect CAP. Here, molecularly imprinted polymer (MIP) was combined with metal-organic frameworks@Au (MOFs@Au) collaborative construction surface-enhanced Raman spectroscopy (SERS) based aptasensor for CAP ultrasensitive detection. MOFs@Au first carried the Raman signal molecule toluidine blue (TB) and aptamer to form MOFs@Au@TB@Apt. In addition, rMIP (CAP was removed) was dropped onto the uniform three-dimensional (3D) SERS substrate SiO2@AuAg to form SiO2@AuAg@rMIP. In the presence of target CAP, it could be specifically captured with rMIP by covalent interaction and was recognised by the aptamer. During this time, SiO2@AuAg@rMIP@CAP could selectively connect MOFs@Au@TB@Apt to realise synergistic enhance the Raman signal. Based on this principle, the proposed SERS aptasensor exhibits excellent sensitivity with a detection limit of 7.59×10-13 M for CAP, providing a new strategy for trace detection in food.
Collapse
Affiliation(s)
- Runzi Zhang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Qianyan Zhang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Jia Yang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Shuping Yu
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiao Yang
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
3
|
Supriya S, Das S, Samal SK, Senapati S, Naik R. Rapid microwave-assisted synthesis and characterization of a novel CuCoTe nanocomposite material for optoelectronic and dielectric applications. NANOSCALE 2024; 16:7566-7581. [PMID: 38501979 DOI: 10.1039/d4nr00081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In the realm of nanomaterial research, copper telluride and cobalt telluride have individually attracted considerable attention owing to their unique properties and potential applications. However, there exists a notable gap in the literature when it comes to the exploration of composite materials derived from these elements. From this point of view, a ternary CuCoTe nanocomposite was prepared using the microwave synthesis method. Various characterizations were performed by varying the power and irradiation time. X-Ray diffraction study and transmission electron microscopy analysis confirmed the polycrystalline nature of the material with Cu2Te and CoTe hexagonal phases. Field emission scanning electron microscopy images reveal nanoparticle-like morphology, which remains unchanged even when the time of irradiation increases. In addition, the nanoparticle size of the material lies in the range of 30-39 nm. The differential scanning calorimetry inferred various exothermic and endothermic peaks. Meanwhile, the optical analysis from the UV-visible study shows the red-shifted absorbance, enabling the material for semiconductor and photovoltaic devices. Furthermore, the optical bandgap of the material varies in the range from 2.45 to 3.61 eV, which reveals the tuneable bandgap desiring the material for various optoelectronic applications. The frequency-temperature-dependent dielectric study gives results for dielectric parameters, conductivity, and impedance behaviour. The material's dielectric constant, dielectric loss, and AC conductivity enhance with the increase in temperature. This behaviour of the material broadens the area of applicability in energy storage devices.
Collapse
Affiliation(s)
- Swikruti Supriya
- Department of Engineering and Materials Physics, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, 751013, India.
| | - Subhashree Das
- Department of Engineering and Materials Physics, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, 751013, India.
| | - Satish K Samal
- Department of Electronics and Communication Engineering, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Subrata Senapati
- Department of Engineering and Materials Physics, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, 751013, India.
| | - Ramakanta Naik
- Department of Engineering and Materials Physics, Institute of Chemical Technology-Indian Oil Odisha Campus, Bhubaneswar, 751013, India.
| |
Collapse
|
4
|
Tabassum J, Baig N, Sohail M, Nafady A, Shah SSA, Ul-Hamid A, Tsiakaras P. Novel and efficient Bi-doped CoTe nano-solar evaporators embedded on leno weave cotton gauze for efficient solar-driven desalination. J Colloid Interface Sci 2024; 658:758-771. [PMID: 38150932 DOI: 10.1016/j.jcis.2023.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Solar-driven desalination is considered an alternative to the conventional desalination due to its nearly zero carbon footprint and ease of operating in remote areas. Water can be purified wherever sunlight is available, providing a viable solution to water shortage. Metal chalcogenide-based materials are revolutionary for solar evaporators due to their excellent photothermal conversion efficiency, facile synthesis methods, stability, and low cost. Herein we present a prototype Bi-doped CoTe nano-solar evaporator embedded on leno weave cotton gauze (Bi/CoTe@CG) using the sonication process. The nano-solar evaporator was synthesized using a simple hydrothermal approach to provide an opportunity to scale up. The as designed solar evaporator consisting of 5 % Bi/CoTe@CG showed an excellent water flux of 2.38 kg m-2 h-1 upon one sun radiation (1 kW m-2), considered among the highest literature-reported values. The introduced solar evaporator showed excellent solar efficiency of 96.7 %, good stability, and reusability for five cycles of one hour. The best doping ratio of Bi in CoTe was obtained as Bi0.5Co9.5Te with a contact angle of 11.9° in powder form. The hydrophilic nature of the designed solar-evaporator increased the water interaction with the embedded nano-solar evaporator, which helps the transfer of the heat to nearby water molecules, break their hydrogen bonding and increase the evaporation rate. The ion concentration, of the desalinated pure water collected using Bi/CoTe@CG, decreased by many orders of magnitude and it is far below the limit of WHO standards for Na+ and K+. Thus, a self-floating Bi-doped CoTe nano-solar evaporator deposited on cotton gauze (CG) is an excellent solar evaporator for seawater desalination. The proposed solar evaporator is another step towards introducing environmentally friendly desalination methods.
Collapse
Affiliation(s)
- Javeria Tabassum
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan.
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece.
| |
Collapse
|
5
|
Amorim I, Bento F. Electrochemical Sensors Based on Transition Metal Materials for Phenolic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:756. [PMID: 38339472 PMCID: PMC10857252 DOI: 10.3390/s24030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Electrochemical sensors have been recognized as crucial tools for monitoring comprehensive chemical information, especially in the detection of a significant class of molecules known as phenolic compounds. These compounds can be present in water as hazardous analytes and trace contaminants, as well as in living organisms where they regulate their metabolism. The sensitive detection of phenolic compounds requires highly efficient and cost-effective electrocatalysts to enable the development of high-performance sensors. Therefore, this review focuses on the development of advanced materials with excellent catalytic activity as alternative electrocatalysts to conventional ones, with a specific emphasis on transition metal-based electrocatalysts for the detection of phenolic compounds. This research is particularly relevant in diverse sectors such as water quality, food safety, and healthcare.
Collapse
Affiliation(s)
- Isilda Amorim
- Centre of Chemistry, University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Fátima Bento
- Centre of Chemistry, University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Velmurugan G, Ganapathi Raman R, Prakash D, Kim I, Sahadevan J, Sivaprakash P. Influence of Ni and Sn Perovskite NiSn(OH) 6 Nanoparticles on Energy Storage Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091523. [PMID: 37177068 PMCID: PMC10179963 DOI: 10.3390/nano13091523] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
New NiSn(OH)6 hexahydroxide nanoparticles were synthesised through a co-precipitation method using various concentrations of Ni2+ and Sn4+ ions (e.g., 1:0, 0:1, 1:2, 1:1, and 2:1; namely, N, S, NS-3, NS-2, and NS-1) with an ammonia solution. The perovskite NiSn(OH)6 was confirmed from powder X-ray diffraction and molecule interactions due to different binding environments of Ni, Sn, O, and water molecules observed from an FT-IR analysis. An electronic transition was detected from tin (Sn 3d) and nickel (Ni 2p) to oxygen (O 2p) from UV-Vis/IR spectroscopy. Photo luminescence spectroscopy (PL) identified that the emission observed at 400-800 nm in the visible region was caused by oxygen vacancies due to various oxidation states of Ni and Sn metals. A spherical nanoparticle morphology was observed from FE-SEM; this was due to the combination of Ni2+ and Sn4+ increasing the size and porosity of the nanoparticle. The elemental (Ni and Sn) distribution and binding energy of the nanoparticle were confirmed by EDAX and XPS analyses. Among the prepared various nanoparticles, NS-2 showed a maximum specific capacitance of 607 Fg-1 at 1 Ag-1 and 56% capacitance retention (338 Fg-1 and 5 Ag-1), even when increasing the current density five times, and excellent cycle stability due to combining Ni2+ with Sn4+, which improved the ionic and electrical conductivity. EIS provided evidence for NS-2's low charge transfer resistance compared with other prepared samples. Moreover, the NS-2//AC (activated carbon) asymmetric supercapacitor exhibited the highest energy density and high-power density along with excellent cycle stability, making it the ideal material for real-time applications.
Collapse
Affiliation(s)
- G Velmurugan
- Department of Physics, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari 629180, Tamil Nadu, India
| | - R Ganapathi Raman
- Department of Physics, Saveetha Engineering College (Autonomous), Chennai 602105, Tamil Nadu, India
| | - D Prakash
- Department of Physics, Kongunadu College of Engineering and Technology, Thottiyam 621215, Tamil Nadu, India
| | - Ikhyun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea
| | - Jhelai Sahadevan
- Centre for Material Science, Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - P Sivaprakash
- Department of Mechanical Engineering, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
7
|
Manikandan M, Manikandan E, Alshgari RA, Karami AM, Ahmad A. NiTe Magnetic Semiconductor Nanorods for Optical Limiting and Hydrogen Peroxide Sensor. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
8
|
Amara U, Mahmood K, Hassan M, Hanif M, Khalid M, Usman M, Shafiq Z, Latif U, Ahmed MM, Hayat A, Nawaz MH. Functionalized thiazolidone-decorated lanthanum-doped copper oxide: novel heterocyclic sea sponge morphology for the efficient detection of dopamine. RSC Adv 2022; 12:14439-14449. [PMID: 35702245 PMCID: PMC9096811 DOI: 10.1039/d2ra01406h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, we synthesized lanthanum (La)-doped sea sponge-shaped copper oxide (CuO) nanoparticles and wrapped them with novel O-, N- and S-rich (2Z,5Z)-3-acetyl-2-((3,4-dimethylphenyl)imino)-5-(2-oxoindolin-3-ylidene)thiazolidin-4-one (La@CuO-DMT). The shape and composition of the designed materials were confirmed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and Raman spectroscopy. The graphitic pencil electrode (GPE) fabricated using La@CuO-DMT showed excellent sensing efficacy against dopamine (DA) with good selectivity, reproducibility and ideal stability. The unique morphology and massive surface defects by La@CuO offer good accessibility to DA and enhance smooth and robust channeling of electrons at the electrode-electrolyte interface. Consequently, these properties resulted in improved reaction kinetics and robust DA oxidation with an amplified faradaic response. Meanwhile, O-, N-, and S-enriched carbon support, i.e. DMT, inhibited the leaching of electrode matrixes, resulting in a superior detection limit of 423 nm and an improved sensitivity of 13.9 μA μM-1 cm-2 in the linear range of 10 μM to 1500 μM. Additionally, the developed sensing interface was successfully employed to analyze DA from tear samples with excellent percentage recoveries. We expect that such engineered morphology-based nanoparticles with a O-, N-, and S-rich C support will facilitate the development of DA sensors for in vitro screening of rarely studied tear samples with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Maria Hassan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan 608000 Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University 308 Ningxia Road Qingdao Shangdong 266071 China
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | | | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| |
Collapse
|
9
|
Suresh Babu K, Padmanaban A, Narayanan V. Surface tuned Au-ZnO nanorods for enhanced electrochemical sensing ability towards the detection of gallic acid. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Amara U, Rashid S, Mahmood K, Nawaz MH, Hayat A, Hassan M. Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. RSC Adv 2022; 12:8059-8094. [PMID: 35424750 PMCID: PMC8982343 DOI: 10.1039/d1ra07988c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
The foremost challenge in countering infectious diseases is the shortage of effective therapeutics. The emergence of coronavirus disease (COVID-19) outbreak has posed a great menace to the public health system globally, prompting unprecedented endeavors to contain the virus. Many countries have organized research programs for therapeutics and management development. However, the longstanding process has forced authorities to implement widespread infrastructures for detailed prognostic and diagnostics study of severe acute respiratory syndrome (SARS CoV-2). This review discussed nearly all the globally developed diagnostic methodologies reported for SARS CoV-2 detection. We have highlighted in detail the approaches for evaluating COVID-19 biomarkers along with the most employed nucleic acid- and protein-based detection methodologies and the causes of their severe downfall and rejection. As the variable variants of SARS CoV-2 came into the picture, we captured the breadth of newly integrated digital sensing prototypes comprised of plasmonic and field-effect transistor-based sensors along with commercially available food and drug administration (FDA) approved detection kits. However, more efforts are required to exploit the available resources to manufacture cheap and robust diagnostic methodologies. Likewise, the visualization and characterization tools along with the current challenges associated with waste-water surveillance, food security, contact tracing, and their role during this intense period of the pandemic have also been discussed. We expect that the integrated data will be supportive and aid in the evaluation of sensing technologies not only in current but also future pandemics.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Sidra Rashid
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Maria Hassan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| |
Collapse
|