1
|
Bagastyo AY, Anggrainy AD, Khoiruddin K, Ursada R, Warmadewanthi IDAA, Wenten IG. Electrochemically-driven struvite recovery: Prospect and challenges for the application of magnesium sacrificial anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
2
|
Aziz A, Carrasco J. Modelling magnesium surfaces and their dissolution in an aqueous environment using an implicit solvent model.. J Chem Phys 2022; 156:174702. [DOI: 10.1063/5.0087683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Magnesium has attracted a growing interest for its use in various applications, primarily due to its, abundance, lightweight properties and relatively low-cost. However, one major drawback to its widespread use remains its reactivity in aqueous environments, which is poorly understood at the atomistic level. Ab initio density functional theory methods are particularly well suited to bridge this knowledge gap, but the explicit simulation of electrified water/metal interfaces is often too costly from a computational viewpoint. Here we investigate water/Mg interfaces using the computationally efficient implicit solvent model VASPsol. We show that the Mg (0001), (10-10), and (10-11) surfaces each form different electrochemical double layers due to the anisotropic smoothing of the electron density at their surfaces, following Smoluchowski rules. We highlight the dependence that the position of the diffuse cavity surrounding the interface has on the potential of zero charge and the electron double layer capacitance, and how these parameters are also affected by the addition of explicated water and adsorbed OH. Lastly, we calculate the equilibrium potential of Mg2+ / Mg0 in an aqueous environment as 2.46 V vs. standard hydrogen electrode in excellent agreement with experiment.
Collapse
Affiliation(s)
| | - Javier Carrasco
- Power Storage: Batteries and Supercaps, CIC energiGUNE, Spain
| |
Collapse
|
3
|
Li S, Li H, Zhao C, Wang Z, Liu K, Du W. Effects of Ca addition on microstructure, electrochemical behavior and magnesium-air battery performance of Mg-2Zn-xCa alloys. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Filotás D, Nagy L, Nagy G, Souto R. New insights on the influence of aluminum on the anomalous hydrogen evolution of anodized magnesium using scanning electrochemical microscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|